

MISTIK MANAGEMENT LTD.

# 2019 20-YEAR FOREST MANAGEMENT PLAN

# Volume II Document VI- Forest Estate Modeling

**Background Information Document** 



# 2019 FOREST MANAGEMENT PLAN – VOLUME II FOREST ESTATE MODELING DOCUMENT

# for the

# Mistik and L&M Forest Management Agreement (FMA) Areas



# For the 20-year period from April 1, 2019 to March 31, 2039

© 2018 Mistik Management Ltd. Box 9060 Meadow Lake, Saskatchewan Canada, S9X 1V7 All rights reserved. No part of this text may be reproduced or used in any form or by any means – mechanical, graphic or electronic, including photocopying without the prior written permission of Mistik Management Ltd.

#### Library and Archives Canada Cataloguing in Publication

Nesdoly, Roger G., 1954 Mistik Management Ltd. 2019: 20-year forest management plan / Roger G. Nesdoly.

Includes bibliographical references. Title: Mistik Management Ltd. 2019 20-Year Forest Management Plan Vol II Forest Estate Modeling ISBN 978-0-9699737-2-0



# **Changes Since Previous Submission**

This document was previously submitted to Saskatchewan Ministry of Environment on April 6, 2018. The only changes from the version submitted on that date to this current and final version are listed below.

| Section | Page  | Change                                                                                                                                                                                         |  |  |
|---------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| N/A     | N/A   | Headers (changed to "2019 Forest Estate Modeling")                                                                                                                                             |  |  |
| N/A     | 2     | Changed date: April 1, 2019 to March 31, 2039                                                                                                                                                  |  |  |
| N/A     | 3     | Removed sign-off sheet and added this description of changes                                                                                                                                   |  |  |
| N/A     | N/A   | Footers (changed to dates)                                                                                                                                                                     |  |  |
| N/A     | N/A   | Changed footnotes: date changed from "2017" to "2019"                                                                                                                                          |  |  |
| N/A     | N/A   | Changed throughout document any reference to "2017" to "2019"                                                                                                                                  |  |  |
| N/A     | N/A   | In all of the Control Parameters in Section 5 the top diameter was placed in bold to ensure it is clear which utilization standard was used                                                    |  |  |
| 2.4     | 18    | Removed "District" from the planning unit names                                                                                                                                                |  |  |
| 3.5     | 22    | Footnote changed to remove 5 inch top comment                                                                                                                                                  |  |  |
| 4       | 29    | Updated softwood LRSYA MAIs and volumes in the tables based on 10 cm top diameter. Also updated footnotes to 10 cm top diameter                                                                |  |  |
| 5.5     | 35-36 | Table 5.3 updated to include new scenario for 10 cm. Also added footnote                                                                                                                       |  |  |
| 6       | 78    | Updated wording for SMS to include "10 cm top diameter utilization standards"                                                                                                                  |  |  |
| 6.2     | 79    | Updated Yield curves parameter in Table 6.2 for model parameters to include "10 cm top diameter utilization standards"                                                                         |  |  |
| 6.3     | 80-82 | Updated harvest profile volumes and figures for both companies                                                                                                                                 |  |  |
| 6.3.1   | 83-84 | Updated planning unit volume summaries and figures                                                                                                                                             |  |  |
| 6.3.2   | 84    | Updated Retention wording and summary table                                                                                                                                                    |  |  |
| 6.3.3   | 85    | Replaced tables 6.4 and 6.5 with one table which includes degrade, retention and additional volume from merch. trees. New wording in the section for the degrade, final HVS calculations, etc. |  |  |



# Contents

| Executiv | e Summary                                | 12 |
|----------|------------------------------------------|----|
| 1. Intr  | oduction                                 | 13 |
| 2. Stud  | dy Area                                  | 14 |
| 2.1.     | Location                                 | 14 |
| 2.2.     | Landbase Definition                      | 15 |
| 2.3.     | Modeling Landbase                        | 17 |
| 2.3.     | 1. Modeling Landbase Development         | 17 |
| 2.4.     | Planning Units and Operating Areas       | 17 |
| 3. Mo    | deling Assumptions                       | 19 |
| 3.1.     | Forest Inventory                         | 19 |
| 3.2.     | Growth & Yield                           | 19 |
| 3.3.     | Utilization Specifications               | 21 |
| 3.4.     | Cull Deductions                          | 22 |
| 3.5.     | Operability Limits                       | 22 |
| 3.6.     | Silviculture                             | 22 |
| 3.7.     | Development Type Transitions             | 23 |
| 3.8.     | Forest Stand Break-up Ages               | 24 |
| 3.8.     | 1. Sensitivity Analysis                  | 24 |
| 3.9.     | Re-Planning Threshold                    | 25 |
| 3.10.    | Non-Timber Objectives                    | 25 |
| 3.10     | 0.1. Seral Stage                         | 25 |
| 3.10     | 0.2. Inblock-Retention                   | 26 |
| 3.10     | 0.3. Event Size                          | 26 |
| 3.10     | 0.4. Old Forest Patch Size               | 27 |
| 3.10     | ).5. Woodland Caribou                    | 27 |
| 4. Lor   | ng Run Sustained Yield Average (LRSYA)   |    |
| 4.1.     | Long Run Sustained Yield Average (LRSYA) |    |
| 5. Wo    | od Supply Model                          | 31 |
| 5.1.     | Wood Supply Model Parameters             | 31 |
| 5.1.     | 1. Basic Parameters                      | 32 |
| 5.2.     | Model Priorities                         |    |
|          |                                          |    |



| 5.2.1.              | Productive versus Non-Productive Land                                                                                                              | .33 |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 5.2.2.              | Mature and Immature Forest                                                                                                                         | .33 |
| 5.2.3.              | Forest Age                                                                                                                                         | .33 |
| 5.2.4.              | Volume                                                                                                                                             | .33 |
| 5.2.5.              | Proximity to Mill                                                                                                                                  | .33 |
| 5.2.6.              | Recent Burns                                                                                                                                       | .33 |
| 5.2.7.              | Insect and Disease                                                                                                                                 | .34 |
| 5.2.8.              | Social Considerations                                                                                                                              | .34 |
| 5.2.9.              | Road Infrastructure                                                                                                                                | .34 |
| 5.2.10.             | Forest Economics                                                                                                                                   | .34 |
| 5.3. M              | lodel Limitations                                                                                                                                  | .34 |
| 5.4. N              | atural Disturbance Risks                                                                                                                           | .34 |
| 5.5. So             | cenarios Explored                                                                                                                                  | .35 |
| 5.5.1.              | FMS 1 Total Volume (10 cm)                                                                                                                         | .37 |
| 5.5.2.              | FMS 2 Total Volume (7.5 cm)                                                                                                                        | .40 |
| 5.5.3.              | FMS 3 Total Volume                                                                                                                                 | .43 |
| 5.5.4.              | FMS 4 Hardwood                                                                                                                                     | .46 |
| 5.5.5.              | FMS 5 Softwood                                                                                                                                     | .49 |
| 5.5.6.              | FMS 6 Total Volume with Caribou Constraints                                                                                                        | .52 |
| 5.5.7.              | FMS 7 Total Volume with Caribou and Seral Stage Constraints                                                                                        | .55 |
| 5.5.8.              | FMS 8 Total Volume with Caribou, Seral Stage, and Old Forest Constraints                                                                           | .58 |
| 5.5.9.<br>Blocks    | FMS 9 Total Volume with Caribou, Seral Stage, Old Forest Constraints and Planned 61                                                                |     |
| 5.5.10.<br>Planne   | FMS 10 Total Volume with Caribou, Seral Stage, Old Forest Constraints and d/Tactical Blocks                                                        | .64 |
| 5.5.11.<br>Constr   | FMS 11 Total Volume with Caribou, Seral Stage, Old Forest, L&M Black Spruce<br>aints, and Planned/Tactical Blocks                                  | .67 |
| 5.5.12.<br>Old Fo   | FMS 11 (Spatial, 12.7 cm Top Diameter) Total Volume with Caribou, Seral Stage,<br>prest, L&M Black Spruce Constraints, and Planned/Tactical Blocks | .70 |
| 5.6. T              | actical Plan                                                                                                                                       | .73 |
| Selecte             | d Management Strategy                                                                                                                              | .78 |
| 6.1. S <sub>1</sub> | patial Parameters                                                                                                                                  | .78 |
| 6.2. M              | Iodel Parameters                                                                                                                                   | .79 |
|                     |                                                                                                                                                    |     |

6.

# MISTIK MANAGEMENT LTD. 2019 FOREST ESTATE MODELING

| 6.3.     | Harvest Profile                     | 80 |
|----------|-------------------------------------|----|
| 6.3.1    | . Harvest Profile by Planning Unit  | 83 |
| 6.3.2    | 2. Retention Adjustment             | 84 |
| 6.3.3    | 3. HVS and HVS Pulp Summary         | 85 |
| 6.4.     | Future Forest Condition             | 85 |
| 6.5.     | Woodland Caribou Analysis           | 94 |
| 6.6.     | Piece Size Analysis                 | 95 |
| 7. Nati  | aral Forest Patterns                | 96 |
| 7.1.     | Event Size                          | 96 |
| 7.2.     | Seral Stage                         |    |
| 7.3.     | Interior Old Forest                 |    |
| 7.4.     | Retention                           |    |
| 7.5.     | Old Forest Patch Size               |    |
| 8. Salv  | age Harvesting                      |    |
| 8.1.     | Salvage Harvest Timing              |    |
| 8.2.     | Salvage Harvest Retention Criteria  |    |
| 8.2.1    | . Retention Arrangement             |    |
| 8.2.2    | 2. Live Tree Retention              |    |
| Appendix | A: Rotation Age Analysis            |    |
| Appendix | B: Development Type Transitions     |    |
| Appendix | C: Seral Stage Maintenance Strategy |    |
| Strateg  | y Details                           |    |
| Appendix | D: Piece Size Analysis              |    |
| Appendix | x E: Data Submission                |    |



# **FIGURES**

| Figure 2.1: Map of the Mistik FMP area14                                                                                                  | ł        |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Figure 2.2: Net Productive Area Age Class Distribution By Overstorey Species Group: Mistik FMA                                            | ,<br>)   |
| Figure 2.3: Net Productive Area Age Class Distribution By Overstorey Species Group: L&M FMA                                               | ,<br>)   |
| Figure 5.1: Results - FMS 1 Total Volume (10 cm)                                                                                          | ;        |
| Figure 5.2: Results - FMS 2 Total Volume (7.5 cm)                                                                                         |          |
| Figure 5.3: Results - FMS 3 Total Volume                                                                                                  | ŀ        |
| Figure 5.4: Results – FMS 4 Hardwood                                                                                                      | ,        |
| Figure 5.5: Results – FMS 5 Softwood                                                                                                      | )        |
| Figure 5.6: Results - FMS 6 Total Volume with Caribou Constraints                                                                         | \$       |
| Figure 5.7: Results - FMS 7 Total Volume with Caribou and Seral Stage Constraints                                                         | )        |
| Figure 5.8: Results - FMS 8 Total Volume with Caribou, Seral Stage, and Old Forest Constraints59                                          | )        |
| Figure 5.9: Results – FMS 9 Total Volume with Caribou, Seral Stage, Old Forest Constraints and<br>Planned Blocks                          | <u>,</u> |
| Figure 5.10: Results – FMS 10 Total Volume with Caribou, Seral Stage, Old Forest Constraints and Planned/Tactical Blocks                  | ;        |
| Figure 5.11: Results – FMS 11 Total Volume with Caribou, Seral Stage, Old Forest, Black Spruce<br>Constraints and Planned/Tactical Blocks | 3        |
| Figure 5.12: Results – FMS 11 Spatial with 12.7 CM Top Diameter71                                                                         |          |
| Figure 5.13: Tactical Plan Profile                                                                                                        | ŀ        |
| Figure 6.1: Harvest Volume Results – Selected Management Strategy                                                                         | )        |
| Figure 6.2: SMS Harvest Volume Results by Planning Unit83                                                                                 | ;        |
| Figure 6.3: Caribou Range Harvest                                                                                                         | ŀ        |
| Figure 7.1: Combining Adjacent Stands into a Single Event Patch96                                                                         | )        |
| Figure 7.2: Clustering of Patches into a Common Event                                                                                     | )        |
| Figure 7.3: Current and Year 20 Interior Old Forest 102                                                                                   | 2        |
| Figure C.1 Identification of eligible stands for late seral retention                                                                     | 2        |
| Figure D.1 Piece Size Development Type 1: S-WS-A-A 114                                                                                    | ŀ        |
| Figure D.2 Piece Size Development Type 2: S-BS-A-A 115                                                                                    | ,<br>)   |
| Figure D.3 Piece Size Development Type 3: S-JP-LD-A-1 116                                                                                 | )        |
| Figure D.4 Piece Size Development Type 4: S-JP-LD-A-2 117                                                                                 | ,        |



| Figure D.5 Piece Size Development Type 5: S-JP-HD-A-1   | 118 |
|---------------------------------------------------------|-----|
| Figure D.6 Piece Size Development Type 6: S-JP-HD-A-2   | 119 |
| Figure D.7 Piece Size Development Type 7: S-JP-L&M      | 120 |
| Figure D.8 Piece Size Development Type 8: SH-JP-A-A     | 121 |
| Figure D.9 Piece Size Development Type 9: SH-WS-A-A     | 122 |
| Figure D.10 Piece Size Development Type 10: HS-WS-A-A   | 123 |
| Figure D.11 Piece Size Development Type 11: HS-JP-A-A   | 124 |
| Figure D.12 Piece Size Development Type 12: H-A-LD-A-1  | 125 |
| Figure D.13 Piece Size Development Type 13: H-A-LD-A-2  | 126 |
| Figure D.14 Piece Size Development Type 14: H-A-HD-A-1  | 127 |
| Figure D.15 Piece Size Development Type 15: H-A-HD-A-2  | 128 |
| Figure D.16 Piece Size Development Type 16: H(S)-A-LD-A | 129 |
| Figure D.17 Piece Size Development Type 17: H(S)-A-HD-A | 130 |



# TABLES

| Table 2.1 Forest Characterization Summary by FMA Area                                  | 15 |
|----------------------------------------------------------------------------------------|----|
| Table 2.2 Modeled Landbase Area Summary by FMA                                         | 17 |
| Table 2.3 Planning Unit Productive Area Summary                                        | 18 |
| Table 2.4 Planning Unit and Operating Area Summary                                     | 18 |
| Table 3.1: Forest Development Type Assignment                                          | 20 |
| Table 3.2: Forest Development Type Assignment Area Summary                             | 20 |
| Table 3.3: Utilization Standards for Mistik And L&M                                    | 21 |
| Table 3.4: Changing Utilization Standards for Conifer to a 7.5cm Top                   | 21 |
| Table 3.5: Changing Utilization Standards for Conifer to a 12.5cm Top                  | 21 |
| Table 3.6: Minimum Harvest Ages and Volumes by Development Type                        | 22 |
| Table 3.7: Development Type Transitions                                                | 23 |
| Table 3.8: Development Type Rotation and Break-Up Ages                                 | 24 |
| Table 3.9: Seral Stage Age Ranges by Species Group                                     | 25 |
| Table 3.10: Seral Stage Targets by SGR Type                                            | 26 |
| Table 4.1: Net LRSYA Estimates: "Modeled" Regeneration Transition – Mistik FMA Area    | 29 |
| Table 4.2: Net LRSYA Estimates: "Status Quo" Regeneration Transition – Mistik FMA Area | 29 |
| Table 4.3: Net LRSYA Estimates: "Modeled" Regeneration Transition – L&M FMA Area       | 30 |
| Table 4.4: Net LRSYA Estimates: "Status Quo" Regeneration Transition – L&M FMA Area    | 30 |
| Table 5.1: Theme 7 Description                                                         | 32 |
| Table 5.2: Harvest Simulation Control Parameter Definitions Used in Analysis           | 32 |
| Table 5.3: Forest Management Scenarios Explored                                        | 35 |
| Table 5.4: Control Parameters - FMS 1                                                  | 37 |
| Table 5.5: Control Parameters - FMS 2                                                  | 40 |
| Table 5.6: Control Parameters - FMS 3                                                  | 43 |
| Table 5.7: Control Parameters - FMS 4                                                  | 46 |
| Table 5.8: Control Parameters - FMS 5                                                  | 49 |
| Table 5.9: Control Parameters - FMS 6                                                  | 52 |
| Table 5.10: Control Parameters - FMS 7                                                 | 55 |
| Table 5.11: Control Parameters - FMS 8                                                 | 58 |
| Table 5.12: Control Parameters - FMS 9                                                 | 61 |



| Table 5.13: Control Parameters - FMS 10                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------|
| Table 5.14: Control Parameters - FMS 11                                                                                                  |
| Table 5.15: Control Parameters - FMS 11 (12.7 Cm, Spatial)70                                                                             |
| Table 5.16: Planned Block Area and Volume Summary                                                                                        |
| Table 6.1: Spatial Rules for Spatial Optimizer Run  78                                                                                   |
| Table 6.2: Control Parameters - SMS Total Volume with Caribou, Seral Stage, Old Forest       Constraints and The Planned/Tactical Blocks |
| Table 6.3: Mistik and L&M HVS with Retention  84                                                                                         |
| Table 6.4: Saw log and Pulp                                                                                                              |
| Table 6.5: Mistik Age Class Distribution by Species Group for the Operable Area: Current and Year    10                                  |
| Table 6.6: Mistik Age Class Distribution by Species Group for the Operable Area: Year 20 and Year    50                                  |
| Table 6.7: Mistik Age Class Distribution by Species Group for the Operable Area: Year 100 and       Year 200                             |
| Table 6.8: Mistik SMS Operable Area by Species Group  89                                                                                 |
| Table 6.9: L&M Age Class Distribution by Species Group for the Operable Area: Current and Year    10                                     |
| Table 6.10: L&M Age Class Distribution by Species Group for the Operable Area: Year 20 and Year    50                                    |
| Table 6.11: L&M Age Class Distribution by Species Group for the Operable Area: Year 100 and       Year 200                               |
| Table 6.12: L&M SMS Operable Area by Species Group                                                                                       |
| Table 7.1: Event Size Distribution for the Selected Management Strategy in Years 1-5                                                     |
| Table 7.2: Event Size Distribution for the Selected Management Strategy in Years 6-10                                                    |
| Table 7.3: Event Size Summary years 1-10  98                                                                                             |
| Table 7.4: Selected Management Strategy Late Seral Stage Productive Area Retention Amounts 100                                           |
| Table 7.5: Selected Management Strategy Old And Very Old Area Retention Amounts                                                          |
| Table 7.6: Old Forest Patch Size Distribution for the Selected Management Strategy                                                       |
| Table D.1: Piece Size Development Type 1: S-WS-A-A  114                                                                                  |
| Table D.2: Piece Size Development Type 2: S-BS-A-A                                                                                       |
| Table D.3: Piece Size Development Type 3: S-JP-LD-A-1 116                                                                                |
| Table D.4: Piece Size Development Type 4: S-JP-LD-A-2                                                                                    |
| Table D.5: Piece Size Development Type 5: S-JP-HD-A-1  118                                                                               |



# MAPS

| Map 5.1 Mistik FMP Area Tactical Plan | 76 |
|---------------------------------------|----|
| Map 5.2 Mistik FMP Area Old Forest    | 77 |



# **EXECUTIVE SUMMARY**

On behalf of Mistik Management Ltd. (Mistik) and L&M Forest Products Ltd. (L&M), I am pleased to present Mistik's 2019 20-Year FMP Volume II: Forest Estate Modeling document completed in fulfilment of the requirements of Saskatchewan's Forest Resources Management Act (1999), the Province of Saskatchewan's 2017 Forest Management Planning Standard Document (September 2017) and Mistik's and L&M's Forest Management Agreements with the Province of Saskatchewan.

Mistik's 2019 20-Year FMP Volume II: Forest Estate Modeling provides both the Province of Saskatchewan and the public with a variety of information related to sustainable forest management of Mistik's and L&M's Forest Management Agreements, hereby known as the Mistik FMP Area. This portion of the forest management plan describes the following topics:

- Modelling assumptions;
- Long run sustained yield average;
- Wood supply model;
- Selected management strategy
- Natural forest patterns
- Salvage harvesting

Given the requirements of the planning standard, Forest Management Scenario (FMS) 11 was selected as the strategy This FMS was determined to be the selected management strategy (SMS) as it maintained the desired harvest flows while also satisfying the non-timber constraints. The following is the HVS determined based on the selected management strategy:

| SELECTED MANAGEMENT STRATEGY: HARVEST VOLUME RESULTS |                            |                        |              |
|------------------------------------------------------|----------------------------|------------------------|--------------|
| MISTIK                                               |                            | L&M                    |              |
| SUMMARY TABLE                                        |                            | SUMMARY TABLE          |              |
| Net Productive Area                                  | 817,284 ha                 | Net Productive Area    | 61,226 ha    |
| Softwood Harvest Level                               | 549,986 m <sup>3</sup> /yr | Softwood Harvest Level | 79,429 m³/yr |
| Hardwood Harvest Level                               | 999,753 m <sup>3</sup> /yr | Hardwood Harvest Level | 49,899 m³/yr |



# **1. INTRODUCTION**

As outlined in the Saskatchewan 2017 Forest Management Planning Standard, a key component of a 20-Year Forest Management Plan (FMP) is the Forest Estate Modeling (FEM)

report. Part of the FEM is to produce a Wood Supply Analysis (WSA). The primary goal of the wood supply analysis is to determine an Harvest Volume Schedule (HVS) level that provides the desired flow of forest values and achieves the desired future forest state. This document

HVS: the volume of timber that can be harvested under sustained-yield management in any one year, as identified in the Mistik 2019 Forest Management Plan.

contains a detailed description of the methods and processes used for the Mistik FMP area in the WSA.

In the process of identifying and using the best available information as inputs for the WSA, two supporting documents have been produced and submitted to Saskatchewan Environment Forest Service, including:

- Forest Characterization (2019) Documents the data used and process followed to characterize the forest and determine the portions of the Mistik FMP area that are considered productive and are modeled as part of the WSA.
- Forest Development (2019) Documents the data used and process followed to determine development types and yield curves used in the WSA for the portions of the Mistik FMP area that are identified as Net Productive Area as described in the Forest Characterization document.
- Modelling Assumptions (2019)- Documents the key assumptions and inputs that Mistik and L&M will be using in the WSA
- VOITS (2019) Documents the values, objectives, indicators, and targets to be utilized within the Mistik FMP area



# 2.1. LOCATION

The Mistik and L&M FMAs are in the northwest central region of the province along the border of Alberta (Figure 2-1). The Mistik FMA surrounds the Department of the National Defence's air weapons range. The L&M FMA is located just south of the town of Meadow Lake. The area for both FMAs can be found in Table 2.1.





∬ silvacom™



# 2.2. LANDBASE DEFINITION

The following section outlines the landbase characterization categories developed in the forest characterization process. For more information on the development of the categories please refer to the Forest Characterization document. The area in each characterization category and the net productive forested area age class distribution by overstorey species group category are presented for the Mistik and L&M FMA areas in Table 2.1, Figure 2.2, and Figure 2.3.

| LANDBASE CATEGORY                                           | MISTIK<br>AREA (HA) | L&M AREA<br>(HA) | TOTAL<br>AREA (HA) |
|-------------------------------------------------------------|---------------------|------------------|--------------------|
| Gross FMA Landbase Area                                     | 1,809,288           | 69,211           | 1,878,499          |
| Water (Lakes and Rivers)                                    | 74,535              | 223              | 74,758             |
| Landuse Dispositions (Recreation Areas and Timber Reserves) | 6,767               | 0                | 6,767              |
| Non-Forested: Anthropogenic                                 | 11,999              | 697              | 12,696             |
| Non-Forested: Natural                                       | 149,638             | 2,953            | 152,591            |
| Sub-Total (Permanent Exclusions)                            | 242,939             | 3,873            | 246,812            |
| FMA Managed Forested Area                                   | 1,566,349           | 65,338           | 1,631,687          |
| Watercourse Buffers - 15 m                                  | 18,316              | 1,031            | 19,347             |
| Watercourse Buffers - 30 m                                  | 5,814               | 107              | 5,921              |
| Watercourse Buffers - 90 m                                  | 32,506              | 0                | 32,506             |
| Inoperable                                                  | 253                 | 0                | 253                |
| Operational Constraints - Low Productivity Class            | 111,511             | 332              | 111,843            |
| Operational Constraints - Low Crown Closure                 | 121,816             | 2,158            | 123,974            |
| Operational Constraints - High Larch Component              | 175,096             | 0                | 175,096            |
| Operational Constraints - Significant Disease on Pine       | 6,928               | 0                | 6,928              |
| Operational Constraints - Black Spruce Considerations       | 276,824             | 484              | 277,308            |
| FMA Net Productive Area                                     | 817,284             | 61,226           | 878,510            |
| Forest Management Modification Area                         | 0                   | 0                | 0                  |
| Sub-Total (Partial Exclusions)                              | 749,064             | 4,112            | 753, 176           |
| FMA Net Productive Area – No Constraints                    | 817,284             | 61,226           | 878,510            |

#### TABLE 2.1 FOREST CHARACTERIZATION SUMMARY BY FMA AREA



#### FIGURE 2.3: NET PRODUCTIVE AREA AGE CLASS DISTRIBUTION BY OVERSTOREY SPECIES GROUP: L&M FMA



∭ silvacom™



# 2.3. MODELING LANDBASE

For the WSA it was required to develop a landbase which would be utilized within the WSA model. The landbase that will be utilized within the model will include the net productive areas of both the Mistik and L&M FMAs along with the eligible exclusions, consistent with the process agreed to and followed for the 2007 FMP. The eligible exclusions include forested areas that are in buffers and operational constraints. Table 2.2 provides a breakdown of the area included within the model.

# TABLE 2.2 MODELED LANDBASE AREA SUMMARY BY FMA

| LANDBASE CATEGORY                                     | MISTIK<br>AREA (HA) | L&M AREA<br>(HA) | TOTAL<br>AREA (HA) |
|-------------------------------------------------------|---------------------|------------------|--------------------|
| FMA Net Productive Area                               | 817,284             | 61,226           | 878,510            |
| Dispositions                                          | 4,817               | 0                | 4,817              |
| Watercourse Buffers - 15 m                            | 8,170               | 636              | 8,807              |
| Watercourse Buffers - 30 m                            | 3,503               | 52               | 3,555              |
| Watercourse Buffers - 90 m                            | 20,770              | 0                | 20,770             |
| Inoperable                                            | 243                 | 0                | 243                |
| Operational Constraints - Low Crown Closure           | 68,868              | 1,100            | 69,968             |
| Operational Constraints - High Larch Component        | 23,669              | 0                | 23,669             |
| Operational Constraints - Significant Disease on Pine | 6,928               | 0                | 6,928              |
| Operational Constraints - Black Spruce Considerations | 0                   | 4                | 4                  |
| Total Eligible Exclusions                             | 136,970             | 1,792            | 138,762            |
| Modeling Landbase Area                                | 954,254             | 63,018           | 1,017,272          |

# 2.3.1. MODELING LANDBASE DEVELOPMENT

The modeling landbase was developed from the submitted planning inventory. It was necessary to overlay the caribou range along with the tactical plan onto the submitted planning inventory. This was necessary in order to assign the tactical blocks in the wood supply model and report activities in the caribou range. In addition, it was necessary to add a year of origin (YOO) field based on feedback from Saskatchewan Environment Forest Service.

# 2.4. PLANNING UNITS AND OPERATING AREAS

The Mistik FMP area will be managed or will be presented in the 2019 FMP within the context of five planning units, consisting of a total of thirteen landscape-level management units ranging in size from 13,706 ha to 355,677 ha. The management units were combined into larger planning units.

Table 2.3 identifies the larger planning units, the management units that are within each planning unit, and respective areas (ha) comprising the current Mistik FMP area. The average management unit size is 152,700 ha. On average, only 47% (ranging from 31% to 71%) of the Mistik FMP area is considered capable of supporting timber harvesting. Each management unit within the FMP area is subdivided into many operating areas. There are 416 operating areas comprising the Mistik FMA area with an average size of ~4,400 ha (Table 2.4). The L&M FMA area is subdivided into 10 operating areas and the FMA area contributes to the timber supply.



# TABLE 2.3 PLANNING UNIT PRODUCTIVE AREA SUMMARY<sup>1</sup>

| PLANNING UNIT | MANAGEMENT<br>UNIT | MODELED AREA (HA) | NET PRODUCTIVE AREA<br>WITHIN THE MODELED<br>AREA (HA) | % PRODUCTIVE |
|---------------|--------------------|-------------------|--------------------------------------------------------|--------------|
|               | 20-Beaver River    | 9,005             | 8,044                                                  | 89%          |
| Wost          | 03-Big Island Lake | 27,745            | 26,751                                                 | 96%          |
| WEST          | 12-Murray Bay      | 42,817            | 37,167                                                 | 87%          |
|               | 02-Pierceland      | 74,692            | 65,597                                                 | 88%          |
| Subtotal      |                    | 154,259           | 137,558                                                | 89%          |
|               | 09-Ile a la Crosse | 40,928            | 34,463                                                 | 84%          |
|               | 10-Buffalo         | 54,977            | 50,060                                                 | 91%          |
| Central       | 07-Beauval         | 64,322            | 53,693                                                 | 83%          |
|               | 04-Waterhen        | 124,281           | 106,428                                                | 86%          |
|               | 08-Canoe Lake      | 70,444            | 60,688                                                 | 86%          |
| Subtotal      |                    | 354,952           | 305,333                                                | 86%          |
| North         | 21-Peter Pond      | 131,351           | 102,577                                                | 78%          |
| NOTUT         | 11-Dillon          | 201,871           | 172,489                                                | 85%          |
| Subtotal      |                    | 333,222           | 275,066                                                | 83%          |
| Divide        | 01-Divide          | 107,002           | 99,326                                                 | 93%          |
| Subtotal      |                    | 107,002           | 99,326                                                 | 93%          |
| L&M           | 85- L&M            | 63,018            | 61,226                                                 | 97%          |
| Subtotal      |                    | 63,018            | 61,226                                                 | 97%          |
| Total         |                    | 1,012,453         | 878,509                                                | 87%          |

# TABLE 2.4 PLANNING UNIT AND OPERATING AREA SUMMARY

| PLANNING UNITS | MANAGEMENT UNIT    | MODELED AREA (HA) | # OF OPERATING<br>AREAS | AVERAGE OP. AREA SIZE<br>WITHIN THE MODELED<br>AREA (HA) |
|----------------|--------------------|-------------------|-------------------------|----------------------------------------------------------|
|                | 20-Beaver River    | 9,005             | 4                       | 2,251                                                    |
| Most           | 03-Big Island Lake | 27,745            | 8                       | 3,468                                                    |
| West           | 12-Murray Bay      | 42,817            | 16                      | 2,676                                                    |
|                | 02-Pierceland      | 74,692            | 31                      | 2,409                                                    |
| Subtotal       |                    | 154,259           | 59                      | 2,615                                                    |
|                | 09-Ile a la Crosse | 40,928            | 27                      | 1,516                                                    |
|                | 10-Buffalo Narrows | 54,977            | 29                      | 1,895                                                    |
| Central        | 07-Beauval         | 64,322            | 34                      | 1,892                                                    |
|                | 04-Waterhen        | 124,281           | 45                      | 2,762                                                    |
|                | 08-Canoe Lake      | 70,444            | 29                      | 2,429                                                    |
| Subtotal       |                    | 354,952           | 164                     | 2,164                                                    |
| North          | 21-Peter Pond      | 131,351           | 35                      | 3,753                                                    |
| NOTUT          | 11-Dillon          | 201,871           | 113                     | 1,786                                                    |
| Subtotal       |                    | 333,222           | 148                     | 2,252                                                    |
| Divide         | 01-Divide          | 107,002           | 45                      | 2,378                                                    |
| Subtotal       |                    | 107,002           | 45                      | 2,378                                                    |
| L&M            | 85-L&M             | 63,018            | 10                      | 6,302                                                    |
| Subtotal       |                    | 63,018            | 10                      | 6,302                                                    |
| Total          |                    | 1,012,453         | 426                     | 2,377                                                    |

<sup>&</sup>lt;sup>1</sup> The total modeled area in the planning units does not match the total gross area in Table 2.1 since management units 78 (Recreation Area) and 79 (Timber Reserve) are not included within a planning unit.



# 3. MODELING ASSUMPTIONS

This section summarizes the modeling assumptions utilized within the wood supply analysis. Further details related to the modeling assumptions can be located within the Modeling Assumptions document.

# 3.1. FOREST INVENTORY

The forest inventory involved a complete stratification of all forested and non-forested areas within the Mistik FMP area using Saskatchewan Forest Vegetation Inventory (SFVI) standards. This "census" of the entire landbase will accommodate complete FMA area-wide summaries by tile, species, age class or any other inventory attribute, and will facilitate short and long-term planning.

Medium scale (1:10,000 and 1:15,000) 'leaf-on', black and white panchromatic air photo coverage was obtained for Mistik's entire FMA area beginning in 1994 and ending in 2005. The stratification of forested and non-forested lands was completed in accordance with SFVI specifications created by Silvacom Ltd. (approved, September 06, 2000).

Digital orthophotos (1:60,000) were produced by Land Data Technologies Inc., acquired (in combination with 50 metre digital elevation model data) between 1998 and 2001. Data stratified on the aerial photography was transferred to these orthophotos, digitized and entered into a database. Throughout the various processes strict quality control measures were implemented.

It should be noted the effective date of this planning inventory is 2015 meaning all disturbance data and stand ages were updated to this date. The one exception is that 2016 cutblocks were included in the modeling landbase and their ages were set to zero.

# 3.2. GROWTH & YIELD

Mistik and L&M compiled yield curves for the FMAs in 2007 during development of the previous FMPs. Descriptions of how these yield curves were developed can be found within the Forest Development document. A summary table (Table 3.1) below demonstrates how the development type was assigned to each forested stand. The net area within each development type and FMA can be found within Table 3.2.

#### TABLE 3.1: FOREST DEVELOPMENT TYPE ASSIGNMENT

| SPECIES<br>GROUP<br>(DT_SPGP) | LEADING<br>SPECIES<br>(DT_SPECIES) | CROWN<br>COVER<br>(DT_CROWN) | PRODUCTIVITY<br>CLASS<br>(DT_PCLASS) | SIGNIFICANT<br>SOFTWOOD<br>(SIG_SOFT) | DEVELOPMENT<br>TYPE<br>(DEVTYPE) | DEVELOPMENT<br>TYPE CODE<br>(DEV_CODE) |
|-------------------------------|------------------------------------|------------------------------|--------------------------------------|---------------------------------------|----------------------------------|----------------------------------------|
| S                             | WS                                 | ALL                          | ALL                                  | N/A                                   | 'S-WS-A-A'                       | 1                                      |
| S                             | BS                                 | ALL                          | ALL                                  | N/A                                   | 'S-BS-A-A'                       | 2                                      |
| S                             | JP                                 | LD                           | 1                                    | N/A                                   | 'S-JP-LD-A-1'                    | 3                                      |
| S                             | JP                                 | LD                           | 2                                    | N/A                                   | 'S-JP-LD-A-2'                    | 4                                      |
| S                             | JP                                 | HD                           | 1                                    | N/A                                   | 'S-JP-HD-A-1'                    | 5                                      |
| S                             | JP                                 | HD                           | 2                                    | N/A                                   | 'S-JP-HD-A-2'                    | 6                                      |
| S                             | JP                                 | ALL                          | ALL                                  | N/A                                   | 'S-JP-L&M'                       | 7                                      |
| SH                            | JP                                 | ALL                          | ALL                                  | N/A                                   | 'SH-JP-A-A'                      | 8                                      |
| SH                            | WS                                 | ALL                          | ALL                                  | N/A                                   | 'SH-WS-A-A'                      | 9                                      |
| HS                            | WS                                 | ALL                          | ALL                                  | N/A                                   | 'HS-WS-A-A'                      | 10                                     |
| HS                            | JP                                 | ALL                          | ALL                                  | N/A                                   | 'HS-JP-A-A'                      | 11                                     |
| Н                             | N/A                                | LD                           | 1                                    | 0                                     | 'H-A-LD-A-1'                     | 12                                     |
| Н                             | N/A                                | LD                           | 2                                    | 0                                     | 'H-A-LD-A-2'                     | 13                                     |
| Н                             | N/A                                | HD                           | 1                                    | 0                                     | 'H-A-HD-A-1'                     | 14                                     |
| Н                             | N/A                                | HD                           | 2                                    | 0                                     | 'H-A-HD-A-2'                     | 15                                     |
| Н                             | N/A                                | LD                           | ALL                                  | 1                                     | 'H(S)-A-LD-A'                    | 16                                     |
| Н                             | N/A                                | HD                           | ALL                                  | 1                                     | 'H(S)-A-HD-A'                    | 17                                     |

# TABLE 3.2: FOREST DEVELOPMENT TYPE ASSIGNMENT AREA SUMMARY

|                       |                  | MISTIK  | L&M    |
|-----------------------|------------------|---------|--------|
| Development TTPE CODE | DEVELOPMENT TYPE | Area    | (ha)   |
| 1                     | 'S-WS-A-A'       | 20,052  | 2,963  |
| 2                     | 'S-BS-A-A'       | 23,669  | 10,910 |
| 3                     | 'S-JP-LD-A-1'    | 94,565  | 0      |
| 4                     | 'S-JP-LD-A-2'    | 29,871  | 0      |
| 5                     | 'S-JP-HD-A-1'    | 101,108 | 0      |
| 6                     | 'S-JP-HD-A-2'    | 57,705  | 0      |
| 7                     | S-JP-L&M'        | 0       | 17,962 |
| 8                     | 'SH-JP-A-A'      | 46,711  | 7,334  |
| 9                     | 'SH-WS-A-A'      | 48,507  | 3,266  |
| 10                    | 'HS-WS-A-A'      | 50,345  | 4,033  |
| 11                    | 'HS-JP-A-A'      | 38,209  | 3,976  |
| 12                    | 'H-A-LD-A-1'     | 16,625  | 570    |
| 13                    | 'H-A-LD-A-2'     | 27,589  | 1,018  |
| 14                    | 'H-A-HD-A-1'     | 61,877  | 2,362  |
| 15                    | 'H-A-HD-A-2'     | 124,471 | 3,546  |
| 16                    | 'H(S)-A-LD-A'    | 29,848  | 1,257  |
| 17                    | 'H(S)-A-HD-A'    | 46,135  | 2,028  |
| Tot                   | tal              | 817,286 | 61,226 |



# 3.3. UTILIZATION SPECIFICATIONS

The utilization standards used to calculate both softwood and hardwood net merchantable volume are described in detail in the Forest Development document. The utilization parameters for both the Mistik and L&M FMA areas can be found in Table 3.3. There were sensitivity scenarios explored testing on the impacts of increasing the minimum top diameters. For these tests the utilization standards are found within Table 3.4 and Table 3.5. Following discussion with the companies, Mistik and L&M will be using the 10 cm softwood top utilization for the SMS.

| UTILIZATION                              | L&M YIELD CURVE # 7 |          | MISTIK + L&M (ALL O | THER YIELD CURVES) |
|------------------------------------------|---------------------|----------|---------------------|--------------------|
| PARAMETER                                | Hardwood            | Softwood | Hardwood            | Softwood           |
| Stump Height (m)                         | 0.3                 | 0.3      | 0.3                 | 0.3                |
| Minimum Top Diameter<br>Inside Bark (cm) | 8                   | 10       | 7.5                 | 10                 |
| Log Length (m)                           | n/a                 | n/a      | 2.6                 | 2.6                |
| Merchantable Minimum<br>Bole Length (m)  | 4.9                 | 5.2      | 5.2                 | 5.2                |

#### TABLE 3.3: UTILIZATION STANDARDS FOR MISTIK AND L&M

#### TABLE 3.4: CHANGING UTILIZATION STANDARDS FOR CONIFER TO A 7.5CM TOP

| UTILIZATION                              | L&M YIELD CURVE # 7 |          | MISTIK + L&M (ALL OTHER YIELD CURVES) |          |
|------------------------------------------|---------------------|----------|---------------------------------------|----------|
| PARAMETER                                | Hardwood            | Softwood | Hardwood                              | Softwood |
| Stump Height (m)                         | 0.3                 | 0.3      | 0.3                                   | 0.3      |
| Minimum Top Diameter<br>Inside Bark (cm) | 8                   | 7.5      | 7.5                                   | 7.5      |
| Log Length (m)                           | n/a                 | n/a      | 2.6                                   | 2.6      |
| Merchantable Minimum<br>Bole Length (m)  | 4.9                 | 5.2      | 5.2                                   | 5.2      |

#### TABLE 3.5: CHANGING UTILIZATION STANDARDS FOR CONIFER TO A 12.5CM TOP<sup>2</sup>

| UTILIZATION          | L&M YIELD CURVE # 7 |          | MISTIK + L&M (ALL OTHER YIELD CURVES |          |
|----------------------|---------------------|----------|--------------------------------------|----------|
| PARAMETER            | Hardwood            | Softwood | Hardwood                             | Softwood |
| Stump Height (m)     | 0.3                 | 0.3      | 0.3                                  | 0.3      |
| Minimum Top Diameter | 8                   | 12 7     | 75                                   | 12.7     |
| Inside Bark (cm)     | 8                   | 12.1     | 7.5                                  | 12.7     |
| Log Length (m)       | n/a                 | n/a      | 2.6                                  | 2.6      |
| Merchantable Minimum | 10                  | 5.2      | 5.2                                  | 5.2      |
| Bole Length (m)      | 4.9                 | 5.2      | 5.2                                  | 5.2      |

<sup>&</sup>lt;sup>2</sup> The analysis was completed for a 5" top, which converts to 12.7 cm. However, as discussed with Saskatchewan Government at the August 10, 2017 Planning Team meeting, for consistency with analysis done throughout the province, we have used 12.5cm to label this scenario.



# 3.4. CULL DEDUCTIONS

Cull deductions were applied to the yields of each development type to account for scalable defects in the wood volume. These defects include rot, checks, sweep, and crook. For the Mistik and L&M FMAs the cull deductions that will be used in the Wood Supply Analysis are 1.5% for softwood and 7.4% for hardwood. The cull factors used for the L&M FMA will be the same except for the jack pine yield curve, which are 0.4% for softwood and 4.0% for hardwood.

# 3.5. OPERABILITY LIMITS

The minimum harvest ages and volumes that were utilized in the Wood Supply Analysis can be found in Table 3.6 below. The companies had originally planned on using a minimum harvest volume of 60 m<sup>3</sup>/ha, as noted in the modeling assumptions document. However, it was determined in later discussions that 50 m<sup>3</sup>/ha was now a more appropriate minimum harvest volume.

| DEVELOPMENT TYPE CODE | DEVELOPMENT TYPE | MINIMUM HARVEST<br>AGE | MINIMUM HARVEST<br>VOLUME (m³/ha) <sup>3</sup> |
|-----------------------|------------------|------------------------|------------------------------------------------|
| 1                     | 'S-WS-A-A'       | 100                    | 50                                             |
| 2                     | 'S-BS-A-A'       | 100                    | 50                                             |
| 3                     | 'S-JP-LD-A-1'    | 70                     | 50                                             |
| 4                     | 'S-JP-LD-A-2'    | 70                     | 50                                             |
| 5                     | 'S-JP-HD-A-1'    | 70                     | 50                                             |
| 6                     | 'S-JP-HD-A-2'    | 70                     | 50                                             |
| 7                     | S-JP-L&M'        | 70                     | 50                                             |
| 8                     | 'SH-JP-A-A'      | 80                     | 50                                             |
| 9                     | 'SH-WS-A-A'      | 90                     | 50                                             |
| 10                    | 'HS-WS-A-A'      | 80                     | 50                                             |
| 11                    | 'HS-JP-A-A'      | 80                     | 50                                             |
| 12                    | 'H-A-LD-A-1'     | 70                     | 50                                             |
| 13                    | 'H-A-LD-A-2'     | 70                     | 50                                             |
| 14                    | 'H-A-HD-A-1'     | 70                     | 50                                             |
| 15                    | 'H-A-HD-A-2'     | 70                     | 50                                             |
| 16                    | 'H(S)-A-LD-A'    | 70                     | 50                                             |
| 17                    | 'H(S)-A-HD-A'    | 70                     | 50                                             |

#### TABLE 3.6: MINIMUM HARVEST AGES AND VOLUMES BY DEVELOPMENT TYPE

# 3.6. SILVICULTURE

There were no silvicultural assumptions utilized within the Wood Supply Analysis. The SGR transitions are described for each development type in section 3.7 below.

 $<sup>^3</sup>$  The original minimum harvest volume was set at 50 m<sup>3</sup>/ha following discussions.

# 3.7. DEVELOPMENT TYPE TRANSITIONS

The development type transitions are based on the Silvicultural Ground Rules (SGR). For further information regarding the SGR transitions please refer to the SGR document. The transitions for each development type which was used in the wood supply model can be found in Table 3.7 below.

#### TABLE 3.7: DEVELOPMENT TYPE TRANSITIONS

| DEVELOPMENT TYPE<br>CODE | DEVELOPMENT TYPE | SGR TARGET<br>PERCENT | TRANSITION DEVELOPMENT<br>TYPE |
|--------------------------|------------------|-----------------------|--------------------------------|
| 1                        | 'S-WS-A-A'       | 100                   | 1 - 'S-WS-A-A'                 |
| 2                        |                  | 10                    | 1 - 'S-WS-A-A'                 |
| 2                        | S-BS-A-A         | 90                    | 2 - 'S-BS-A-A'                 |
|                          |                  | 35                    | 3 - 'S-JP-LD-A-1'              |
| 3                        | 'S-JP-LD-A-1'    | 55                    | 5 - 'S-JP-HD-A-1'              |
|                          |                  | 10                    | 8 - 'SH-JP-A-A'                |
|                          |                  | 35                    | 4 - 'S-JP-LD-A-2'              |
| 4                        | 'S-JP-LD-A-2'    | 55                    | 6 - 'S-JP-HD-A-2'              |
|                          |                  | 10                    | 8 - 'SH-JP-A-A'                |
|                          |                  | 90                    | 5 - 'S-JP-HD-A-1'              |
| 5                        | S-JP-HD-A-1      | 10                    | 8 - 'SH-JP-A-A'                |
| <u>^</u>                 |                  | 90                    | 6 - 'S-JP-HD-A-2'              |
| б                        | S-JP-HD-A-2      | 10                    | 8 - 'SH-JP-A-A'                |
| 7                        | S-JP-L&M'        | 100                   | 7 - 'S-JP-L&M'                 |
|                          | 'SH-JP-A-A'      | 65                    | 8 - 'SH-JP-A-A'                |
| 0                        |                  | 10                    | 9 - 'SH-WS-A-A'                |
| 8                        |                  | 20                    | 11 - 'HS-JP-A-A'               |
|                          |                  | 5                     | 17 - 'H(S)-A-HD-A'             |
|                          | 'SH-WS-A-A'      | 10                    | 1 - 'S-WS-A-A'                 |
| 9                        |                  | 70                    | 9 - 'SH-WS-A-A'                |
|                          |                  | 20                    | 10 - 'HS-WS-A-A'               |
| 10                       |                  | 40                    | 9 - 'SH-WS-A-A'                |
| 10                       | H3-W3-A-A        | 60                    | 10 - 'HS-WS-A-A'               |
|                          |                  | 20                    | 8 - 'SH-JP-A-A'                |
|                          |                  | 20                    | 9 - 'SH-WS-A-A'                |
| 11                       | 'HS-JP-A-A'      | 20                    | 10 - 'HS-WS-A-A'               |
|                          |                  | 30                    | 11 - 'HS-JP-A-A'               |
|                          |                  | 10                    | 17 - 'H(S)-A-HD-A'             |
|                          |                  | 15                    | 9 - 'SH-WS-A-A'                |
| 12                       |                  | 15                    | 10 - 'HS-WS-A-A'               |
| 12                       | II-A-ED-A-T      | 5                     | 12 - 'H-A-LD-A-1'              |
|                          |                  | 65                    | 14 - 'H-A-HD-A-1'              |
|                          |                  | 15                    | 9 - 'SH-WS-A-A'                |
| 12                       | 'H-A-I D-A-2'    | 15                    | 10 - 'HS-WS-A-A'               |
|                          |                  | 5                     | 13 - 'H-A-LD-A-2'              |
|                          |                  | 65                    | 15 - 'H-A-HD-A-2'              |
|                          |                  | 15                    | 9 - 'SH-WS-A-A'                |
| 14                       | 'H-A-HD-A-1'     | 15                    | 10 - 'HS-WS-A-A'               |
|                          |                  | 5                     | 12 - 'H-A-LD-A-1'              |

© Mistik Management Ltd.



| DEVELOPMENT TYPE<br>CODE | DEVELOPMENT TYPE | SGR TARGET<br>PERCENT | TRANSITION DEVELOPMENT<br>TYPE |
|--------------------------|------------------|-----------------------|--------------------------------|
|                          |                  | 65                    | 14 - 'H-A-HD-A-1'              |
|                          | 'H-A-HD-A-2'     | 5                     | 9 - 'SH-WS-A-A'                |
| 15                       |                  | 5                     | 10 - 'HS-WS-A-A'               |
|                          |                  | 90                    | 15 - 'H-A-HD-A-2'              |
|                          |                  | 35                    | 9 - 'SH-WS-A-A'                |
| 16                       | 'H(S)-A-LD-A'    | 35                    | 10 - 'HS-WS-A-A'               |
|                          |                  | 30                    | 17 - 'H(S)-A-HD-A'             |
| 17                       |                  | 25                    | 9 - 'SH-WS-A-A'                |
|                          | 'H(S)-A-HD-A'    | 25                    | 10 - 'HS-WS-A-A'               |
|                          |                  | 50                    | 17 - 'H(S)-A-HD-A'             |

# 3.8. FOREST STAND BREAK-UP AGES

The yield curves were generated based on empirical data and the volumes start to decline at varying points in time based on the different development types. Within the Wood Supply Analysis there was a "stand break-up age" set at 400 years for all development types. If a stand in the model reaches 200 years, it's volume and seral stage will remain constant from that point on until the model chooses to harvest it.

# 3.8.1. SENSITIVITY ANALYSIS

There was a sensitivity analysis completed for the break-up ages based on two times the rotation age for each development type. The rotation age is the point where the mean annual increment (MAI) intersects with the periodic annual increment (PAI) or where the slope of the MAI is equal to zero. In certain development types the rotation age was less than the minimum harvest age. In the cases where the rotation age was less than the minimum harvest age the minimum harvest age was used as the rotation age. Table 3.8 below displays the rotation and break-up ages for each development type for the sensitivity analysis.

| DEVELOPMENT TYPE<br>CODE | DEVELOPMENT TYPE                          | ROTATION AGE | BREAK-UP AGE⁴ |
|--------------------------|-------------------------------------------|--------------|---------------|
| 0                        | 'non-net landbase eligible<br>exclusions' | N/A          | 200           |
| 1                        | 'S-WS-A-A'                                | 100          | 200           |
| 2                        | 'S-BS-A-A'                                | 100          | 200           |
| 3                        | 'S-JP-LD-A-1'                             | 80           | 160           |
| 4                        | 'S-JP-LD-A-2'                             | 85           | 170           |
| 5                        | 'S-JP-HD-A-1'                             | 75           | 150           |
| 6                        | 'S-JP-HD-A-2'                             | 70           | 140           |
| 7                        | S-JP-L&M'                                 | 70           | 140           |

#### TABLE 3.8: DEVELOPMENT TYPE ROTATION AND BREAK-UP AGES

<sup>&</sup>lt;sup>4</sup> For some of the development types the break-up age was required to be older as there was already area within the landbase that was older than the break-up age at the onset of the modeling.



| DEVELOPMENT TYPE<br>CODE | DEVELOPMENT TYPE | ROTATION AGE | BREAK-UP AGE⁴ |
|--------------------------|------------------|--------------|---------------|
| 8                        | 'SH-JP-A-A'      | 80           | 160           |
| 9                        | 'SH-WS-A-A'      | 90           | 180           |
| 10                       | 'HS-WS-A-A'      | 80           | 160           |
| 11                       | 'HS-JP-A-A'      | 80           | 160           |
| 12                       | 'H-A-LD-A-1'     | 75           | 150           |
| 13                       | 'H-A-LD-A-2'     | 75           | 150           |
| 14                       | 'H-A-HD-A-1'     | 75           | 150           |
| 15                       | 'H-A-HD-A-2'     | 70           | 140           |
| 16                       | 'H(S)-A-LD-A'    | 70           | 140           |
| 17                       | 'H(S)-A-HD-A'    | 70           | 140           |

Following the analysis of the sensitivity run there was less than 1% change in the HVS (m<sup>3</sup>/yr) between the sensitivity run and the base forest management scenario (FMS 3).

# 3.9. RE-PLANNING THRESHOLD

For this FMP, consistent with Mistik's 2007 20-Year FMP, a re-planning threshold of 10% net area will be in place. In other words, if  $\ge$  87,851 ha (~10% of the net productive landbase) is impacted by natural disturbance, whereby the age class of that area is reset to 0, it would trigger the need for re-planning. For example, if in 2020, wildfire impacts 30,000 ha of the net productive landbase, no re-planning is required because the impact is less than 87,851 ha. If in 2022, wildfire impacts an additional 60,000 ha of the net productive area, re-planning would be initiated because the cumulative impact (90,000 ha) exceeds 87,851 ha of net productive area.

# 3.10. NON-TIMBER OBJECTIVES

There are multiple VOITs that have been established for the Mistik and L&M FMAs through the planning process. As there are many VOITs that do not affect the WSA only the VOITs affect the WSA will be briefly described. For further description of all of the VOITs please refer to the VOITs document. The VOITs that will be included within the WSA are the spatial and temporal VOITs that are affected by the harvest patterns on the landscape.

# 3.10.1. SERAL STAGE

The definitions for the age criteria for the seral stages for the Mistik FMP area is displayed in Table 3.9 below.

# TABLE 3.9: SERAL STAGE AGE RANGES BY SPECIES GROUP



| Spacias              | Seral Stage |           |            |          |          |
|----------------------|-------------|-----------|------------|----------|----------|
| Group                | Young       | Immature  | Mature     | Old      | Very Old |
| S & SH<br>Mixedwoods | 0-20 yrs    | 21-80 yrs | 81-100 yrs | >100 yrs | >120 yrs |
| H & HS<br>Mixedwoods | 0-20 yrs    | 21-70 yrs | 71-90 yrs  | >90 yrs  | >120 yrs |

The seral stage VOITs are affected by the harvest patterns on the landscape and therefore it is necessary to include them as non-timber targets in the wood supply modeling. The two main seral stage VOITs that will be included within the model are VOITs 1.1.1.1 (2a) and 1.1.1.1 (2b). These VOITs maintain specific targeted area of old and very old forested area. The current proposed targets for these two VOITs are briefly described in Table 3.10 below. Appendix C provides further details of the process used to develop the late seral stage retention targets and the processes followed to identify and retain the highest quality stands.

# TABLE 3.10: SERAL STAGE TARGETS BY SGR TYPE

| SGR TYPE             | TARGET (%)                   |                                                |  |  |
|----------------------|------------------------------|------------------------------------------------|--|--|
|                      | Old Forest (VOIT 1.1.1.1 2a) | Very Old Forest (VOIT 1.1.1.1 2b) <sup>5</sup> |  |  |
| S-BS                 | ≥5%                          | ≥0.5%                                          |  |  |
| S-JP                 | ≥5%                          | ≥0.5%                                          |  |  |
| S-WS                 | ≥9%                          | ≥0.9%                                          |  |  |
| SH and HS Mixedwoods | ≥10%                         | ≥1%                                            |  |  |
| Н                    | ≥14%                         | ≥1.4%                                          |  |  |

# 3.10.2. INBLOCK-RETENTION

The final modeled HVS for softwood and hardwood in both the Mistik and L&M FMAs will be adjusted. The final adjusted HVS is dependent on the amount of in-block retention. The in-block retention target is 6% so the final HVS will be impacted by 6% (see Table 6.3). Mistik also plans for a maximum proximal retention of 3%, however according to the 2017 Saskatchewan Forest Management Planning Standard, proximal retention is not factored into an HVS reduction.

# 3.10.3. EVENT SIZE

The target for the harvest event size class distribution for the FMP is that over the next 10 years, at least 25% of all harvested areas will create disturbance events at least 1,000 ha in size. This target was developed using Dr. David Andison's "Pre-Industrial Forest Condition Analysis" (Andison, 2007). The study developed the targets using the natural range of variation for the FMA area. As the process for determining the event and overall event size is dependent on GIS processing it is not controlled within the wood supply model.

<sup>&</sup>lt;sup>5</sup> Very old forest targets are a percentage of the "Old forest" targets. Example: S-BS has a target of 5% of the working forest and eligible excluded landbase. Of the 5% of old forest ≥10% must be very old forest.

# 3.10.4. OLD FOREST PATCH SIZE

Similar to event size the old forest patch size target was developed using Dr. David Andison's "Pre-Industrial Forest Condition Analysis" (Andison, 2007). There are three targets for old forest patch size based on the Andison analysis. These targets include:

- 1. Large Old forest Patches:
  - a. Maintain the number of old forest patches larger than 500 ha on the Mistik FMA at three or greater over the next 10 years.
- 2. Small Old forest Patches:
  - a. Maintain the proportion of old forest area in patches smaller than 50 ha between 60-75% over the next ten years.
- 3. Operable forest in Large Old forest Patches:
  - a. For the next 10 years, the proportion of operable forest in each of the five largest old forest patches shall not be less than 20%.

As the process for determining the old forest patches is dependent on GIS processing it is not controlled within the wood supply model.

# 3.10.5. WOODLAND CARIBOU

At the time of the Forest Estate Modeling, the caribou related VOITs had not yet been identified. To limit harvesting within known caribou-use areas, the same model constraint that was used in 2007 was applied again in the 2019 FMP Forest Estate Model as follows: within a ten year period, the total area harvested will not exceed 3% of the total area of all woodland caribou ranges combined. It should be noted that the caribou ranges used for this model constraint were the same as in the 2007 FMP. Mistik operations will comply with the final caribou VOITs as described in the VOITs document and Volume III, Appendix A.



# 4. LONG RUN SUSTAINED YIELD AVERAGE (LRSYA)

This section summarizes the procedures, results and assumptions applied in determining the sustainable harvest levels for the Mistik and L&M FMA Areas.

# 4.1. LONG RUN SUSTAINED YIELD AVERAGE (LRSYA)

Long Run Sustained Yield Average (LRSYA) is a measure of forest productivity and is calculated as the sum of growth per year of regenerated stands at a selected rotation age. It is derived from the theoretical concept of a regulated forest with a static and uniform age class distribution, a single rotation age, and a single yield function operating across equally productive sites. Under this assumption, the annual harvest equates to the annual growth in the selected age class. LRSYA is calculated using the following formula:

$$LRSYA = \sum_{i=1}^{k} MAI_{i} \bullet A_{i}$$

Where:

| LRSYA | = | long run sustained yield average (m <sup>3</sup> /yr);      |
|-------|---|-------------------------------------------------------------|
| MAIi  | = | mean annual increment (m³/ha/yr) for yield class <i>i</i> ; |
| Ai    | = | net area (ha) for yield class <i>i</i> ;                    |
| k     | = | number of yield strata.                                     |

LRSYA estimates are calculated for two scenarios. The first scenario is a "modeled" scenario where it is assumed that all stands are on a transition yield curve with the 10 cm top diameter utilization standard. This assumption is to address the effect of silviculture by regenerating low density sites after harvest to the modeled transitions. The second scenario is a "status quo" scenario where it is assumed that all stands will transition back to their current yield curve with the 10 cm top diameter utilization standard following harvest.

The LRSYA estimates for a modelled transition and status quo transition assumptions are provided for the Mistik FMA Area in Table 4.1 and Table 4.2 and for the L&M FMA Area in Table 4.3 and Table 4.4. Modelled transitions refer to the transitions used in the timber supply model. Status quo transitions refer to yield curves remaining the same as they currently are.

For the purposes of this Wood Supply Analysis, LRSYA estimates are consistently based off an 80 year rotation age for all development types. The following factors were considered when selecting the rotation age:

- 10 development types, representing 75% of the productive area, have a Mistik Suggested Rotation Age (Appendix A: Rotation Age Analysis) of 80 years (90% of the area is within 1 age class of 80);
- The total area weighted peak MAI is 70 years for all development types. This however was determined by Mistik to be too short considering piece size requirements etc. A rotation age for LRSYA estimates of 80 years is only one age class from the area weighted average peak MAI and more consistent with management objectives.

| <b>TABLE 4.1: Net LRSYA Estimates</b> | : "Modeled" | 'Regeneration | Transition - | Mistik |
|---------------------------------------|-------------|---------------|--------------|--------|
| FMA Area                              |             | -             |              |        |

| Development    | Net Area | MAI <sup>6</sup> (m³/ha/yr) @ 80 Years <sup>7</sup> |          | LRSYA <sup>8</sup> (m <sup>3</sup> /y | r) @ 80 Years |
|----------------|----------|-----------------------------------------------------|----------|---------------------------------------|---------------|
| Туре           | (ha)     | Softwood                                            | Hardwood | Softwood                              | Hardwood      |
| 1 S-WS-A-A     | 20,052   | 2.16                                                | 0.56     | 43,248                                | 11,229        |
| 2 S-BS-A-A     | 23,684   | 0.81                                                | 0.16     | 19,225                                | 3,697         |
| 3 S-JP-LD-A-1  | 94,548   | 1.06                                                | 0.22     | 99,888                                | 20,388        |
| 4 S-JP-LD-A-2  | 29,871   | 1.77                                                | 0.33     | 52,945                                | 9,850         |
| 5 S-JP-HD-A-1  | 101,109  | 1.24                                                | 0.22     | 125,777                               | 22,352        |
| 6 S-JP-HD-A-2  | 57,705   | 2.25                                                | 0.38     | 129,832                               | 21,978        |
| 7 S-JP-L&M     | 0        | 0                                                   | 0.20     | 0                                     | 0             |
| 8 SH-JP-A-A    | 46,711   | 1.05                                                | 1.18     | 49,097                                | 54,929        |
| 9 SH-WS-A-A    | 48,507   | 1.54                                                | 1.44     | 74,820                                | 69,763        |
| 10 HS-WS-A-A   | 50,345   | 1.10                                                | 1.61     | 55,261                                | 81,177        |
| 11 HS-JP-A-A   | 38,209   | 0.88                                                | 1.48     | 33,653                                | 56,542        |
| 12 H-A-LD-A-1  | 16,625   | 0.43                                                | 2.08     | 7,072                                 | 34,564        |
| 13 H-A-LD-A-2  | 27,589   | 0.41                                                | 2.52     | 11,329                                | 69,603        |
| 14 H-A-HD-A-1  | 61,877   | 0.43                                                | 2.08     | 26,323                                | 128,647       |
| 15 H-A-HD-A-2  | 124,471  | 0.19                                                | 2.81     | 23,483                                | 350,107       |
| 16 H(S)-A-LD-A | 29,848   | 0.98                                                | 1.82     | 29,394                                | 54,206        |
| 17 H(S)-A-HD-A | 46,135   | 0.84                                                | 1.97     | 38,898                                | 90,673        |
| Total          | 817,284  |                                                     |          | 820,244                               | 1,079,706     |

# TABLE 4.2: Net LRSYA Estimates: "Status Quo" Regeneration Transition – Mistik **FMA** Area

| Development    | Net Area | t Area MAI <sup>6</sup> (m³/ha/yr) @ 80 Years <sup>7</sup> LRSYA <sup>8</sup> (m³/yr) @ 80 ) |          | r) @ 80 Years |           |
|----------------|----------|----------------------------------------------------------------------------------------------|----------|---------------|-----------|
| Туре           | (ha)     | Softwood                                                                                     | Hardwood | Softwood      | Hardwood  |
| 1 S-WS-A-A     | 20,052   | 2.16                                                                                         | 0.56     | 43,248        | 11,225    |
| 2 S-BS-A-A     | 23,684   | 0.66                                                                                         | 0.11     | 15,686        | 2,635     |
| 3 S-JP-LD-A-1  | 94,548   | 0.71                                                                                         | 0.12     | 67,391        | 11,513    |
| 4 S-JP-LD-A-2  | 29,871   | 1.25                                                                                         | 0.17     | 37,426        | 5,041     |
| 5 S-JP-HD-A-1  | 101,109  | 1.25                                                                                         | 0.14     | 126,232       | 13,880    |
| 6 S-JP-HD-A-2  | 57,705   | 2.21                                                                                         | 0.31     | 127,327       | 18,168    |
| 7 S-JP-L&M     | 0        | 2.37                                                                                         | 0.20     | 0             | 0         |
| 8 SH-JP-A-A    | 46,711   | 1.20                                                                                         | 0.98     | 56,213        | 45,552    |
| 9 SH-WS-A-A    | 48,507   | 1.70                                                                                         | 1.49     | 82,252        | 72,312    |
| 10 HS-WS-A-A   | 50,345   | 0.70                                                                                         | 1.69     | 35,190        | 85,261    |
| 11 HS-JP-A-A   | 38,209   | 0.37                                                                                         | 1.38     | 14,297        | 52,736    |
| 12 H-A-LD-A-1  | 16,625   | 0.09                                                                                         | 2.22     | 1,578         | 36,975    |
| 13 H-A-LD-A-2  | 27,589   | 0.03                                                                                         | 2.58     | 907           | 71,069    |
| 14 H-A-HD-A-1  | 61,877   | 0.09                                                                                         | 2.29     | 5,851         | 141,862   |
| 15 H-A-HD-A-2  | 124,471  | 0.08                                                                                         | 2.95     | 9,532         | 366,989   |
| 16 H(S)-A-LD-A | 29,848   | 0.50                                                                                         | 1.73     | 14,987        | 51,612    |
| 17 H(S)-A-HD-A | 46,135   | 0.49                                                                                         | 2.34     | 22,557        | 107,893   |
| Total          | 817,284  |                                                                                              |          | 660,674       | 1,094,722 |

<sup>&</sup>lt;sup>6</sup> MAI includes cull deductions (1.5% Softwood, 7.4% Hardwood) and is based off the 10 cm top diameter utilization standard yield curves. <sup>7</sup> MAI's for Softwood and Hardwood in the modeled transitions are weighted averages based on the transition percentages

<sup>&</sup>lt;sup>8</sup> Minor differences in LRSYA calculations are a result of rounding.

| TABLE 4.3: Net LRSYA Estimates: | "Modeled" | Regeneration | Transition – L&M FMA |
|---------------------------------|-----------|--------------|----------------------|
| Area                            |           | -            |                      |

| Development    | Net Area MAI <sup>9</sup> (m³/ha/yr) @ 80 Years <sup>10</sup> LRSYA <sup>11</sup> (m³/y |          | MAI <sup>9</sup> (m³/ha/yr) @ 80 Years <sup>10</sup> |          | vr) @ 80 Years |
|----------------|-----------------------------------------------------------------------------------------|----------|------------------------------------------------------|----------|----------------|
| Туре           | (ha)                                                                                    | Softwood | Hardwood                                             | Softwood | Hardwood       |
| 1 S-WS-A-A     | 2,963                                                                                   | 2.16     | 0.56                                                 | 6,391    | 1,659          |
| 2 S-BS-A-A     | 10,910                                                                                  | 0.81     | 0.16                                                 | 8,856    | 1,703          |
| 3 S-JP-LD-A-1  | 0                                                                                       | 1.06     | 0.22                                                 | 0        | 0              |
| 4 S-JP-LD-A-2  | 0                                                                                       | 1.77     | 0.33                                                 | 0        | 0              |
| 5 S-JP-HD-A-1  | 0                                                                                       | 1.24     | 0.22                                                 | 0        | 0              |
| 6 S-JP-HD-A-2  | 0                                                                                       | 2.25     | 0.38                                                 | 0        | 0              |
| 7 S-JP-L&M     | 17,962                                                                                  | 0        | 0.20                                                 | 42,503   | 3,647          |
| 8 SH-JP-A-A    | 7,334                                                                                   | 1.05     | 1.18                                                 | 7,708    | 8,624          |
| 9 SH-WS-A-A    | 3,266                                                                                   | 1.54     | 1.44                                                 | 5,038    | 4,697          |
| 10 HS-WS-A-A   | 4,033                                                                                   | 1.10     | 1.61                                                 | 4,426    | 6,502          |
| 11 HS-JP-A-A   | 3,976                                                                                   | 0.88     | 1.48                                                 | 3,502    | 5,884          |
| 12 H-A-LD-A-1  | 570                                                                                     | 0.43     | 2.08                                                 | 243      | 1,186          |
| 13 H-A-LD-A-2  | 1,018                                                                                   | 0.41     | 2.52                                                 | 418      | 2,568          |
| 14 H-A-HD-A-1  | 2,362                                                                                   | 0.43     | 2.08                                                 | 1,005    | 4,911          |
| 15 H-A-HD-A-2  | 3,546                                                                                   | 0.19     | 2.81                                                 | 669      | 9,973          |
| 16 H(S)-A-LD-A | 1,257                                                                                   | 0.98     | 1.82                                                 | 1,238    | 2,282          |
| 17 H(S)-A-HD-A | 2,028                                                                                   | 0.84     | 1.97                                                 | 1,710    | 3,986          |
| Total          | 61,226                                                                                  |          |                                                      | 83,707   | 57,623         |

# TABLE 4.4: Net LRSYA Estimates: "Status Quo" Regeneration Transition – L&M **FMA** Area

| Development    | Net Area | MAI <sup>®</sup> (m³/ha/yr | ) @ 80 Years <sup>10</sup> | 0 Years <sup>10</sup> LRSYA <sup>11</sup> (m <sup>3</sup> /yr) @ 80 Years |          |
|----------------|----------|----------------------------|----------------------------|---------------------------------------------------------------------------|----------|
| Туре           | (ha)     | Softwood                   | Hardwood                   | Softwood                                                                  | Hardwood |
| 1 S-WS-A-A     | 2,963    | 2.16                       | 0.56                       | 6,391                                                                     | 1,659    |
| 2 S-BS-A-A     | 10,910   | 0.66                       | 0.11                       | 7,226                                                                     | 1,214    |
| 3 S-JP-LD-A-1  | 0        | 0.71                       | 0.12                       | 0                                                                         | 0        |
| 4 S-JP-LD-A-2  | 0        | 1.25                       | 0.17                       | 0                                                                         | 0        |
| 5 S-JP-HD-A-1  | 0        | 1.25                       | 0.14                       | 0                                                                         | 0        |
| 6 S-JP-HD-A-2  | 0        | 2.21                       | 0.31                       | 0                                                                         | 0        |
| 7 S-JP-L&M     | 17,962   | 2.37                       | 0.20                       | 42,503                                                                    | 3,647    |
| 8 SH-JP-A-A    | 7,334    | 1.20                       | 0.98                       | 8,826                                                                     | 7,152    |
| 9 SH-WS-A-A    | 3,266    | 1.70                       | 1.49                       | 5,538                                                                     | 4,869    |
| 10 HS-WS-A-A   | 4,033    | 0.70                       | 1.69                       | 2,819                                                                     | 6,829    |
| 11 HS-JP-A-A   | 3,976    | 0.37                       | 1.38                       | 1,488                                                                     | 5,488    |
| 12 H-A-LD-A-1  | 570      | 0.09                       | 2.22                       | 54                                                                        | 1,268    |
| 13 H-A-LD-A-2  | 1,018    | 0.03                       | 2.58                       | 33                                                                        | 2,622    |
| 14 H-A-HD-A-1  | 2,362    | 0.09                       | 2.29                       | 223                                                                       | 5,415    |
| 15 H-A-HD-A-2  | 3,546    | 0.08                       | 2.95                       | 272                                                                       | 10,454   |
| 16 H(S)-A-LD-A | 1,257    | 0.50                       | 1.73                       | 631                                                                       | 2,173    |
| 17 H(S)-A-HD-A | 2,028    | 0.49                       | 2.34                       | 992                                                                       | 4,743    |
| Total          | 61,226   |                            |                            | 76,996                                                                    | 57,534   |

<sup>&</sup>lt;sup>9</sup> MAI includes cull deductions (1.5% Softwood, 7.4% Hardwood) and is based off the 10 cm top diameter utilization standard yield curves. <sup>10</sup> MAI's for Softwood and Hardwood in the modeled transitions are weighted averages based on the transition percentages

<sup>&</sup>lt;sup>11</sup> Minor differences in LRSYA calculations are a result of rounding.



# 5. WOOD SUPPLY MODEL

Various forest management scenarios (FMS) were analyzed using Remsoft®, Spatial Planning System (RSPS) or formerly known as Woodstock<sup>™</sup> (version 2017.1). For this WSA, aspatial modeling scenarios were completed in RSPS as optimization formulas with one objective function (e.g. maximize total volume, maximize conifer volume, etc.). Other constraints were placed on the model in order to achieve the desired future forest. The resulting linear programming matrix



(aspatial solution) created by RSPS was solved using MOSEK, an interior point LP solver (version 7.0.).

The model simulates the effect of management strategies on sustainable harvest levels over a specified planning horizon. In its most basic form, RSPS is a model which cuts and grows each stand in the forest, according to user-defined yield functions and forest policy constraints. Operating unit sequencing can also be introduced to reflect "real-world" limitations, such as accessibility and multi-pass harvesting rules.

As the model is aspatial, it is necessary to create a spatial link to the planning layer for the planning horizon. Therefore, the aspatial solution generated in RSPS is run through Remsoft's Spatial Optimizer (formerly known as STANLEY). The Spatial Optimizer uses the solution and the spatial planning layer (shapefile) within RSPS to make the solution spatial. Within the Spatial Optimizer, the user is able to apply adjacency or proximity constraints, green-up delays, etc. in order to:

- Control the distribution (or concentration) of the harvest, and;
- > Mimic operational planning strategies.

# 5.1. WOOD SUPPLY MODEL PARAMETERS

RSPS is comprised of several "sections" which are used to setup the parameters for the wood supply. These sections are described in detail in the modeling assumptions document. One of the sections within the modeling assumptions document describes the "THEMEs" utilized in the wood supply model. Following the submission of the modeling assumptions document there were updates to THEME 7 related to the tactical plan. The updated THEME 7 values and descriptions can be found in Table 5.1 below.

#### TABLE 5.1: THEME 7 DESCRIPTION

| THEME 7 VALUE | DESCRIPTION                                                                          |
|---------------|--------------------------------------------------------------------------------------|
| OF            | Area identified as old forest and not available for harvest in the<br>first 20 years |
| P1            | Area in planned blocks outside the tactical plan                                     |
| P1T1          | Area in planned blocks and the first priority tactical plan (T1)                     |
| P1T2          | Area in planned blocks and the second priority tactical plan (T2)                    |
| T1            | Area available for harvest within the first priority tactical plan                   |
| T2            | Area available for harvest within the second priority tactical plan                  |

The basic parameters are described below and the standard run control parameters used in analysis are defined Table 5.2.

# 5.1.1. BASIC PARAMETERS

The following standard assumptions will be used within all of the FMS in the WSA:

- 200 year planning horizon (40 five year periods = 200 years)
- Yield Curves described in Section 3.2
- Development type transitions described in Section 3.7
- Minimum harvest ages described in Section 3.5 (Operability limits)
- Cull deductions described in Section 3.4

#### TABLE 5.2: HARVEST SIMULATION CONTROL PARAMETER DEFINITIONS USED IN ANALYSIS

| PARAMETER                | DEFINITION                                                                                                      |
|--------------------------|-----------------------------------------------------------------------------------------------------------------|
| Objective:               | Description of the objective function utilized in the scenario                                                  |
| Model Constraints:       | Description of the constraints employed in the model in the specific scenario                                   |
| Effective Date:          | The effective date of the landbase (i.e. the year the latest updates were made)                                 |
| Harvest Unit:            | Description of the area(s) included within the specific scenario                                                |
| Planning horizon:        | Total time period for the analysis scenario (years)                                                             |
| Minimum harvest age:     | Minimum age (years) of stands that are eligible for harvest scheduling; may vary by yield stratum <sup>12</sup> |
| Landbase:                | Landbase available for analysis                                                                                 |
| Yield curves:            | Predicted yields for individual strata                                                                          |
| Cull deductions:         | Percent reduction of predicted yields to account for losses from defects                                        |
| Regeneration transition: | Assumptions applied for the regeneration of stands scheduled for harvest <sup>13</sup>                          |
| Regeneration lag:        | Assumed time period for the establishment of regeneration after harvest                                         |
| Introduce harvest plans: | Incorporation of existing harvest plans into the harvest sequence                                               |

<sup>&</sup>lt;sup>12</sup> Appendix A – Rotation Age Analysis

<sup>&</sup>lt;sup>13</sup> Appendix B – Mistik FMA Area Development Type Transitions



# **5.2. MODEL PRIORITIES**

The following section outlines how various priorities were evaluated or considered.

# 5.2.1. PRODUCTIVE VERSUS NON-PRODUCTIVE LAND

The area utilized within the model included the net productive area and the eligible exclusions of each FMA (Table 2.2). The net productive area is the area available for timber harvesting activities. Consistent with the process agreed to and followed for the 2007 FMP, the eligible exclusions include forested areas that are in buffers and operational constraints. Eligible exclusions are included within the model to contribute to area within seral stage classes.

# 5.2.2. MATURE AND IMMATURE FOREST

Immature forested areas was not considered in the model as a constraint. Old and very old forest was constrained and described in section 3.10.1. These areas are reported on within the seral stage reporting.

# 5.2.3. FOREST AGE

The forest age is utilized in the model when dealing with the operability limits and in calculating the seral stage.

# 5.2.4. VOLUME

The total harvested volume (softwood volume + hardwood volume) is the key driver in the model. The objective function for many of the scenarios explored was to maximize the total harvested volume.

# 5.2.5. PROXIMITY TO MILL

The proximity of stands to the mill is not a limiting factor within the model. There is no constraint related to the proximity to the mill. The hauling distance to the mills is a metric that is reported on in the forest management scenario results.

# 5.2.6. RECENT BURNS

Recent burns were included in the landbase during the forest characterization. The landbase developed during the forest characterization serves as the base for the modeled landbase.



# 5.2.7. INSECT AND DISEASE

Insects and disease infestations are not evaluated or considered within the model. In the event that an infestation occurs it will be reported on. It should be noted that endemic insect and disease damage is implicitly factored into the empirical yield curves.

# 5.2.8. SOCIAL CONSIDERATIONS

Social considerations area not considered in the wood supply model and will be handled at the operational level.

# 5.2.8.1. VISUALLY SENSITIVE AREAS

Visual buffers were not included within the wood supply model. These will be handled at the operational level.

# 5.2.8.2. PUBLIC ENGAGEMENT

Input received through the public engagement process will be handled at the operational level.

# 5.2.9. ROAD INFRASTRUCTURE

Roads are not utilized within the wood supply model. Road infrastructure being developed for the tactical plan will be supplied with the tactical plan.

# 5.2.10. FOREST ECONOMICS

Forest economics was not evaluated or considered within the wood supply model.

# 5.3. MODEL LIMITATIONS

It is important to outline that as with any model there can be uncertainties associated with the model or the model inputs that may impact the results. There have been efforts to reduce the amount of uncertainties associated with this model. For instance, the yield curves and the transitions utilized within the model have been monitored and validated over the previous FMP. This reduces any uncertainties with respect to the growth and yield of the forested stands across the landscape being utilized in the model.

# 5.4. NATURAL DISTURBANCE RISKS

Natural disturbances such as fire, insect and disease, and wind are not included within the model. If a natural disturbance event takes place within either FMA the HVS could be impacted. The extent to which the timber supply is impacted would depend on the size of the natural



disturbance event. If the event is larger than the re-planning threshold identified in section 3.9 then there may be the need to re-run the WSA to determine the HVS.

# 5.5. SCENARIOS EXPLORED

The following Forest Management Scenarios (FMS) in Table 5.3 were explored in the WSA to determine the final selected management strategy. The results of each FMS is displayed in further detail in sections 5.5.1 to 5.5.10. The sensitivity of each non-timber target can be determined by comparing a particular scenario to the previous scenario, with the exception of FMS 6, which should be compared to FMS 3 (Maximize Total Volume). For example, the sensitivity of the Mistik softwood HVS to the caribou range constraint (FMS 3 minus FMS 6) is 5,963 m<sup>3</sup>/yr (528,940 - 522,977). As another example, the sensitivity of the L&M softwood HVS to the seral stage constraint (FMS 6 minus FMS 7) is 5,097 m<sup>3</sup>/yr (70,481 - 65,384).

| FOREST MANAGEMENT SCENARIOS |                                                                                                                                                  | MISTIK                               |                                      | L&M                                  |                                      |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| SCENARIO                    | DESCRIPTION                                                                                                                                      | SOFTWOOD<br>HVS (M <sup>3</sup> /YR) | HARDWOOD<br>HVS (M <sup>3</sup> /YR) | SOFTWOOD<br>HVS (M <sup>3</sup> /YR) | HARDWOOD<br>HVS (M <sup>3</sup> /YR) |
| FMS 1                       | Maximize total volume (10 cm)                                                                                                                    | 653,245                              | 1,089,256                            | 84,238                               | 54,523                               |
| FMS 2                       | Maximize total volume (7.5 cm)                                                                                                                   | 828,876                              | 1,091,949                            | 98,900                               | 54,398                               |
| FMS 3                       | Maximize total volume                                                                                                                            | 528,940                              | 1,083,832                            | 70,481                               | 54,794                               |
| FMS 4                       | Maximize hardwood volume                                                                                                                         | 521,972                              | 1,085,299                            | 67,315                               | 55,845                               |
| FMS 5                       | Maximize softwood volume                                                                                                                         | 531,769                              | 1,001,387                            | 70,749                               | 53,608                               |
| FMS 6                       | Maximize total volume with<br>caribou range constraint                                                                                           | 522,977                              | 1,082,919                            | 70,481                               | 54,794                               |
| FMS 7                       | Maximize total volume with<br>caribou and seral stage<br>constraints                                                                             | 485,467                              | 1,013,815                            | 65,384                               | 52,067                               |
| FMS 8                       | Maximize total volume with caribou, seral stage, and old forest constraints                                                                      | 472,738                              | 1,005,514                            | 66,992                               | 52,214                               |
| FMS 9                       | Maximize total volume with caribou, seral stage, old forest, and planned block constraints                                                       | 470,864                              | 1,001,443                            | 67,118                               | 50,687                               |
| FMS 10                      | Maximize total volume with<br>caribou, seral stage, old forest,<br>planned and tactical block<br>constraints                                     | 467,895                              | 1,000,548                            | 66,577                               | 49,942                               |
| FMS 11                      | Maximize total volume with<br>caribou, seral stage, old forest,<br>planned and tactical block<br>constraints with L&M black<br>spruce constraint | 467,896                              | 1,000,545                            | 66,591                               | 49,928                               |

#### TABLE 5.3: FOREST MANAGEMENT SCENARIOS EXPLORED



| FOREST MANAGEMENT SCENARIOS                         |                                                                                                                                                                                                  | MISTIK                               |                                      | L&M                                  |                                      |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| SCENARIO                                            | DESCRIPTION                                                                                                                                                                                      | SOFTWOOD<br>HVS (M <sup>3</sup> /YR) | HARDWOOD<br>HVS (M <sup>3</sup> /YR) | SOFTWOOD<br>HVS (M <sup>3</sup> /YR) | HARDWOOD<br>HVS (M <sup>3</sup> /YR) |
| FMS 11<br>(12.7 CM,<br>SPATIAL)                     | Maximize total volume with<br>caribou, seral stage, old forest,<br>planned and tactical block<br>constraints with L&M black<br>spruce constraint (12.7 cm top<br>diameter utilization standards) | 467,646                              | 999,753                              | 66,552                               | 49,899                               |
| FMS 11<br>(10 CM,<br>SPATIAL,<br>SMS) <sup>14</sup> | Maximize total volume with<br>caribou, seral stage, old forest,<br>planned and tactical block<br>constraints with L&M black<br>spruce constraint (12.7 cm top<br>diameter utilization standards) | 549,986                              | 999,753                              | 79,429                               | 49,899                               |

<sup>&</sup>lt;sup>14</sup> Following the original submission of the FEM document there was a decision to move back to the 10 cm top diameter utilization standards. FMS 11 was adjusted to utilize the 10 cm top diameter yield curves. This adjustment did not involve selecting new blocks but rather the volume of the already selected blocks.


# 5.5.1. FMS 1 TOTAL VOLUME (10 CM)

Forest Management Scenario (FMS) 1 is a single landbase approach for each FMA that maintains an even flow of softwood and hardwood volumes for the entire planning horizon. The parameter settings used in the analysis of this scenario are displayed in Table 5.4. The results of the strategy are illustrated in Figure 5.1. This FMS is used for sensitivity analysis only and does not determine the final HVS or harvest sequence.

### **TABLE 5.4: CONTROL PARAMETERS - FMS 1**

| FMS 1: MAXIMIZE TOTAL VOLUME (10 CM) |                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONTROL PARAMETER                    | PARAMETER SETTING                                                                                                                                                                                                                                                                                                        |
| Objective:                           | Maximize total volume harvested over the planning horizon                                                                                                                                                                                                                                                                |
| Model constraints:                   | <ol> <li>Even flow softwood and hardwood volume harvest for the Mistik FMA area</li> <li>Even flow softwood and hardwood volume harvest for the L&amp;M FMA area</li> <li>Non-declining softwood and hardwood operable growing stock in both the Mistik and L&amp;M FMA areas</li> </ol>                                 |
| Effective Date                       | 2015                                                                                                                                                                                                                                                                                                                     |
| Harvest unit:                        | Mistik and L&M FMA areas                                                                                                                                                                                                                                                                                                 |
| Planning horizon:                    | 200 yrs                                                                                                                                                                                                                                                                                                                  |
| Minimum harvest age:                 | <ul> <li>100 Years- Black and White Spruce Softwood</li> <li>70 Years- Jack Pine Softwood</li> <li>80 Years- Jack Pine Leading Softwood Mixedwood (SH)</li> <li>90 Years- Spruce Leading Softwood Mixedwood (SH)</li> <li>80 Years- Jack Pine and Spruce Deciduous Mixedwood (HS)</li> <li>70 Years- Hardwood</li> </ul> |
| Landbase:                            | 2016 submitted landbase which includes both Mistik and L&M FMA areas                                                                                                                                                                                                                                                     |
| Yield curves:                        | Net yield curves (17 yield curves/development types) based on <b>10 cm top diameter</b> utilization standards                                                                                                                                                                                                            |
| Cull deductions:                     | Applied to yield curves (1.5% Softwood, 7.4% Hardwood)                                                                                                                                                                                                                                                                   |
| Regeneration transition:             | SGR transition rules                                                                                                                                                                                                                                                                                                     |
| Regeneration lag:                    | Not applied                                                                                                                                                                                                                                                                                                              |
| Introduce harvest plans:             | Not applied                                                                                                                                                                                                                                                                                                              |



### FIGURE 5.1: RESULTS - FMS 1 TOTAL VOLUME (10 CM)









# 5.5.2. FMS 2 TOTAL VOLUME (7.5 CM)

Forest Management Scenario (FMS) 2 is a single landbase approach for each FMA that maintains an even flow of softwood and hardwood volumes for the entire planning horizon. The parameter settings used in the analysis of this scenario are displayed in Table 5.5. The results of the strategy are illustrated in Figure 5.2. This FMS is used for sensitivity analysis only and does not determine the final HVS or harvest sequence.

### TABLE 5.5: CONTROL PARAMETERS - FMS 2

| FMS 2: MAXIMIZE TOTAL VOLUME (7.5 CM) |                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONTROL PARAMETER                     | PARAMETER SETTING                                                                                                                                                                                                                                                                                                        |
| Objective:                            | Maximize total volume harvested over the planning horizon                                                                                                                                                                                                                                                                |
| Model constraints:                    | <ol> <li>Even flow softwood and hardwood volume harvest for the Mistik FMA area</li> <li>Even flow softwood and hardwood volume harvest for the L&amp;M FMA area</li> <li>Non-declining softwood and hardwood operable growing stock in both the Mistik and L&amp;M FMA areas</li> </ol>                                 |
| Effective Date                        | 2015                                                                                                                                                                                                                                                                                                                     |
| Harvest unit:                         | Mistik and L&M FMA areas                                                                                                                                                                                                                                                                                                 |
| Planning horizon:                     | 200 yrs                                                                                                                                                                                                                                                                                                                  |
| Minimum harvest age:                  | <ul> <li>100 Years- Black and White Spruce Softwood</li> <li>70 Years- Jack Pine Softwood</li> <li>80 Years- Jack Pine Leading Softwood Mixedwood (SH)</li> <li>90 Years- Spruce Leading Softwood Mixedwood (SH)</li> <li>80 Years- Jack Pine and Spruce Deciduous Mixedwood (HS)</li> <li>70 Years- Hardwood</li> </ul> |
| Landbase:                             | 2016 submitted landbase which includes both Mistik and L&M FMA areas                                                                                                                                                                                                                                                     |
| Yield curves:                         | Net yield curves (17 yield curves/development types) based on <b>7.5 cm top diameter</b> utilization standards                                                                                                                                                                                                           |
| Cull deductions:                      | Applied to yield curves (1.5% Softwood, 7.4% Hardwood)                                                                                                                                                                                                                                                                   |
| Regeneration transition:              | SGR transition rules                                                                                                                                                                                                                                                                                                     |
| Regeneration lag:                     | Not applied                                                                                                                                                                                                                                                                                                              |
| Introduce harvest plans:              | Not applied                                                                                                                                                                                                                                                                                                              |



#### FIGURE 5.2: RESULTS - FMS 2 TOTAL VOLUME (7.5 CM)









# 5.5.3. FMS 3 TOTAL VOLUME

Forest Management Scenario (FMS) 3 is a single landbase approach for each FMA that maintains an even flow of softwood and hardwood volumes for the entire planning horizon. The parameter settings used in the analysis of this scenario are displayed in Table 5.6. The results of the strategy are illustrated in Figure 5.3. This FMS is used for sensitivity analysis only and does not determine the final HVS or harvest sequence.

### TABLE 5.6: CONTROL PARAMETERS - FMS 3

| FMS 3: MAXIMIZE TOTAL VOLUME |                                                                                                                                                                                                                                                                                                                          |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONTROL PARAMETER            | PARAMETER SETTING                                                                                                                                                                                                                                                                                                        |
| Objective:                   | Maximize total volume harvested over the planning horizon                                                                                                                                                                                                                                                                |
| Model constraints:           | <ol> <li>Even flow softwood and hardwood volume harvest for the Mistik FMA area</li> <li>Even flow softwood and hardwood volume harvest for the L&amp;M FMA area</li> <li>Non-declining softwood and hardwood operable growing stock in both the Mistik and L&amp;M FMA areas</li> </ol>                                 |
| Effective Date               | 2015                                                                                                                                                                                                                                                                                                                     |
| Harvest unit:                | Mistik and L&M FMA areas                                                                                                                                                                                                                                                                                                 |
| Planning horizon:            | 200 yrs                                                                                                                                                                                                                                                                                                                  |
| Minimum harvest age:         | <ul> <li>100 Years- Black and White Spruce Softwood</li> <li>70 Years- Jack Pine Softwood</li> <li>80 Years- Jack Pine Leading Softwood Mixedwood (SH)</li> <li>90 Years- Spruce Leading Softwood Mixedwood (SH)</li> <li>80 Years- Jack Pine and Spruce Deciduous Mixedwood (HS)</li> <li>70 Years- Hardwood</li> </ul> |
| Landbase:                    | 2016 submitted landbase which includes both Mistik and L&M FMA areas                                                                                                                                                                                                                                                     |
| Yield curves:                | Net yield curves (17 yield curves/development types) based on <b>12.7 cm</b><br><b>top diameter</b> utilization standards                                                                                                                                                                                                |
| Cull deductions:             | Applied to yield curves (1.5% Softwood, 7.4% Hardwood)                                                                                                                                                                                                                                                                   |
| Regeneration transition:     | SGR transition rules                                                                                                                                                                                                                                                                                                     |
| Regeneration lag:            | Not applied                                                                                                                                                                                                                                                                                                              |
| Introduce harvest plans:     | Not applied                                                                                                                                                                                                                                                                                                              |



#### FIGURE 5.3: RESULTS - FMS 3 TOTAL VOLUME









### 5.5.4. FMS 4 HARDWOOD

Forest Management Scenario (FMS) 4 is a single landbase approach that maintains an even flow of softwood and hardwood volumes for the entire planning horizon. The parameter settings used in the analysis of this scenario are displayed in Table 5.7. The results of the strategy are illustrated in Figure 5.4. This FMS is used for sensitivity analysis only and does not determine the final HVS or harvest sequence.

### TABLE 5.7: CONTROL PARAMETERS - FMS 4

| FMS 4: MAXIMIZE HARDWOOD VOLUME |                                                                                                                                                                                                                                                                                                                          |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONTROL PARAMETER               | PARAMETER SETTING                                                                                                                                                                                                                                                                                                        |
| Objective:                      | Maximize hardwood volume harvested over the planning horizon                                                                                                                                                                                                                                                             |
| Model constraints:              | <ol> <li>Even flow softwood and hardwood volume harvest for the Mistik FMA area</li> <li>Even flow softwood and hardwood volume harvest for the L&amp;M FMA area</li> <li>Non-declining softwood and hardwood operable growing stock in both the Mistik and L&amp;M FMA areas</li> </ol>                                 |
| Effective Date                  | 2015                                                                                                                                                                                                                                                                                                                     |
| Harvest unit:                   | Mistik and L&M FMA areas                                                                                                                                                                                                                                                                                                 |
| Planning horizon:               | 200 yrs                                                                                                                                                                                                                                                                                                                  |
| Minimum harvest age:            | <ul> <li>100 Years- Black and White Spruce Softwood</li> <li>70 Years- Jack Pine Softwood</li> <li>80 Years- Jack Pine Leading Softwood Mixedwood (SH)</li> <li>90 Years- Spruce Leading Softwood Mixedwood (SH)</li> <li>80 Years- Jack Pine and Spruce Deciduous Mixedwood (HS)</li> <li>70 Years- Hardwood</li> </ul> |
| Landbase:                       | 2016 submitted landbase which includes both Mistik and L&M FMA areas                                                                                                                                                                                                                                                     |
| Yield curves:                   | Net yield curves (17 yield curves/development types) based on <b>12.7 cm</b> top diameter utilization standards                                                                                                                                                                                                          |
| Cull deductions:                | Applied to yield curves (1.5% Softwood, 7.4% Hardwood)                                                                                                                                                                                                                                                                   |
| Regeneration transition:        | SGR transition rules                                                                                                                                                                                                                                                                                                     |
| Regeneration lag:               | Not applied                                                                                                                                                                                                                                                                                                              |
| Introduce harvest plans:        | Not applied                                                                                                                                                                                                                                                                                                              |



### FIGURE 5.4: RESULTS – FMS 4 HARDWOOD









### 5.5.5. FMS 5 SOFTWOOD

Forest Management Scenario (FMS) 5 is a single landbase approach that maintains an even flow of softwood and hardwood volumes for the entire planning horizon. The parameter settings used in the analysis of this scenario are displayed in Table 5.8. The results of the strategy are illustrated in Figure 5.5. This FMS is used for sensitivity analysis only and does not determine the final HVS or harvest sequence.

### TABLE 5.8: CONTROL PARAMETERS - FMS 5

| FMS 5: MAXIMIZE SOFTWOOD VOLUME |                                                                                                                                                                                                                                                                                                                          |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONTROL PARAMETER               | PARAMETER SETTING                                                                                                                                                                                                                                                                                                        |
| Objective:                      | Maximize softwood volume harvested over the planning horizon                                                                                                                                                                                                                                                             |
| Model constraints:              | <ol> <li>Even flow softwood and hardwood volume harvest for the Mistik FMA area</li> <li>Even flow softwood and hardwood volume harvest for the L&amp;M FMA area</li> <li>Non-declining softwood and hardwood operable growing stock in both the Mistik and L&amp;M FMA areas</li> </ol>                                 |
| Effective Date                  | 2015                                                                                                                                                                                                                                                                                                                     |
| Harvest unit:                   | Mistik and L&M FMA areas                                                                                                                                                                                                                                                                                                 |
| Planning horizon:               | 200 yrs                                                                                                                                                                                                                                                                                                                  |
| Minimum harvest age:            | <ul> <li>100 Years- Black and White Spruce Softwood</li> <li>70 Years- Jack Pine Softwood</li> <li>80 Years- Jack Pine Leading Softwood Mixedwood (SH)</li> <li>90 Years- Spruce Leading Softwood Mixedwood (SH)</li> <li>80 Years- Jack Pine and Spruce Deciduous Mixedwood (HS)</li> <li>70 Years- Hardwood</li> </ul> |
| Landbase:                       | 2016 submitted landbase which includes both Mistik and L&M FMA areas                                                                                                                                                                                                                                                     |
| Yield curves:                   | Net yield curves (17 yield curves/development types) based on <b>12.7 cm</b> top diameter utilization standards                                                                                                                                                                                                          |
| Cull deductions:                | Applied to yield curves (1.5% Softwood, 7.4% Hardwood)                                                                                                                                                                                                                                                                   |
| Regeneration transition:        | SGR transition rules                                                                                                                                                                                                                                                                                                     |
| Regeneration lag:               | Not applied                                                                                                                                                                                                                                                                                                              |
| Introduce harvest plans:        | Not applied                                                                                                                                                                                                                                                                                                              |



### FIGURE 5.5: RESULTS – FMS 5 SOFTWOOD









# 5.5.6. FMS 6 TOTAL VOLUME WITH CARIBOU CONSTRAINTS

Forest Management Scenario (FMS) 6 is a single landbase approach that maintains an even flow of softwood and hardwood volumes for the entire planning horizon. The parameter settings used in the analysis of this scenario are displayed in Table 5.9. The results of the strategy are illustrated in Figure 5.6. This FMS is used for sensitivity analysis only and does not determine the final HVS or harvest sequence.

| FMS 6: MAXIMIZE TOTAL VOLUME WITH CARIBOU CONSTRAINTS |                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONTROL PARAMETER                                     | PARAMETER SETTING                                                                                                                                                                                                                                                                                                        |
| Objective:                                            | Maximize total volume harvested over the planning horizon                                                                                                                                                                                                                                                                |
| Model constraints:                                    | <ol> <li>Even flow softwood and hardwood volume harvest for the Mistik FMA area</li> <li>Even flow softwood and hardwood volume harvest for the L&amp;M FMA</li> </ol>                                                                                                                                                   |
|                                                       | <ul><li>area</li><li>3) Non-declining softwood and hardwood operable growing stock in both the Mistik and L&amp;M FMA areas</li></ul>                                                                                                                                                                                    |
|                                                       | <ol> <li>≤3% of the 2006 caribou range can be harvested per decade</li> </ol>                                                                                                                                                                                                                                            |
| Effective Date                                        | 2015                                                                                                                                                                                                                                                                                                                     |
| Harvest unit:                                         | Mistik and L&M FMA areas                                                                                                                                                                                                                                                                                                 |
| Planning horizon:                                     | 200 yrs                                                                                                                                                                                                                                                                                                                  |
| Minimum harvest age:                                  | <ul> <li>100 Years- Black and White Spruce Softwood</li> <li>70 Years- Jack Pine Softwood</li> <li>80 Years- Jack Pine Leading Softwood Mixedwood (SH)</li> <li>90 Years- Spruce Leading Softwood Mixedwood (SH)</li> <li>80 Years- Jack Pine and Spruce Deciduous Mixedwood (HS)</li> <li>70 Years- Hardwood</li> </ul> |
| Landbase:                                             | 2016 submitted landbase which includes both Mistik and L&M FMA areas                                                                                                                                                                                                                                                     |
| Yield curves:                                         | Net yield curves (17 yield curves/development types) based on <b>12.7 cm</b> top diameter utilization standards                                                                                                                                                                                                          |
| Cull deductions:                                      | Applied to yield curves (1.5% Softwood, 7.4% Hardwood)                                                                                                                                                                                                                                                                   |
| Regeneration transition:                              | SGR transition rules                                                                                                                                                                                                                                                                                                     |
| Regeneration lag:                                     | Not applied                                                                                                                                                                                                                                                                                                              |
| Introduce harvest plans:                              | Not applied                                                                                                                                                                                                                                                                                                              |

#### TABLE 5.9: CONTROL PARAMETERS - FMS 6



### FIGURE 5.6: RESULTS – FMS 6 TOTAL VOLUME WITH CARIBOU CONSTRAINTS









# 5.5.7. FMS 7 TOTAL VOLUME WITH CARIBOU AND SERAL STAGE CONSTRAINTS

Forest Management Scenario (FMS) 7 is a single landbase approach that maintains an even flow of softwood and hardwood volumes for the entire planning horizon. The parameter settings used in the analysis of this scenario are displayed in Table 5.10. The results of the strategy are illustrated in Figure 5.7. This FMS is used for sensitivity analysis only and does not determine the final HVS or harvest sequence.

| FMS 7: MAXIMIZE TOTAL VOLUME WITH CARIBOU AND SERAL STAGE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONTROL PARAMETER                                         | PARAMETER SETTING                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Objective:                                                | Maximize total volume harvested over the planning horizon                                                                                                                                                                                                                                                                                                                                                                                                               |
| Model constraints:                                        | <ol> <li>Even flow softwood and hardwood volume harvest for the Mistik FMA area</li> <li>Even flow softwood and hardwood volume harvest for the L&amp;M FMA area</li> <li>Non-declining softwood and hardwood operable growing stock in both the Mistik and L&amp;M FMA areas</li> <li>≤3% of the 2006 caribou range can be harvested per decade</li> <li>Old and Very old seral stage constraints applied based on targets in VOITs 2a and 2b<sup>15</sup>.</li> </ol> |
| Effective Date                                            | 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Harvest unit:                                             | Mistik and L&M FMA areas                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Planning horizon:                                         | 200 yrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Minimum harvest age:                                      | <ul> <li>100 Years- Black and White Spruce Softwood</li> <li>70 Years- Jack Pine Softwood</li> <li>80 Years- Jack Pine Leading Softwood Mixedwood (SH)</li> <li>90 Years- Spruce Leading Softwood Mixedwood (SH)</li> <li>80 Years- Jack Pine and Spruce Deciduous Mixedwood (HS)</li> <li>70 Years- Hardwood</li> </ul>                                                                                                                                                |
| Landbase:                                                 | 2016 submitted landbase which includes both Mistik and L&M FMA areas                                                                                                                                                                                                                                                                                                                                                                                                    |
| Yield curves:                                             | Yield curves (17 yield curves/development types) based on <b>12.7 cm</b> top diameter utilization standards                                                                                                                                                                                                                                                                                                                                                             |
| Cull deductions:                                          | Applied to yield curves (1.5% Softwood, 7.4% Hardwood)                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Regeneration transition:                                  | SGR transition rules                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Regeneration lag:                                         | Not applied                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Introduce harvest plans:                                  | Not applied                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

### TABLE 5.10: CONTROL PARAMETERS - FMS 7

<sup>&</sup>lt;sup>15</sup> See Appendix C for further details on specific seral stage targets



# FIGURE 5.7: RESULTS – FMS 7 TOTAL VOLUME WITH CARIBOU AND SERAL STAGE CONSTRAINTS









# 5.5.8. FMS 8 TOTAL VOLUME WITH CARIBOU, SERAL STAGE, AND OLD FOREST CONSTRAINTS

Forest Management Scenario (FMS) 8 is a single landbase approach that maintains an even flow of softwood and hardwood volumes for the entire planning horizon. The parameter settings used in the analysis of this scenario are displayed in Table 5.11. The results of the strategy are illustrated in Figure 5.8. This FMS is used for sensitivity analysis only and does not determine the final HVS or harvest sequence.

| FMS 6: MAXIMIZE TOTAL VOLUME WITH CARIBOU, SERAL STAGE, AND OLD FOREST |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONTROL PARAMETER                                                      | PARAMETER SETTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Objective:                                                             | Maximize total volume harvested over the planning horizon                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Model constraints:                                                     | <ol> <li>Even flow softwood and hardwood volume harvest for the Mistik FMA area</li> <li>Even flow softwood and hardwood volume harvest for the L&amp;M FMA area</li> <li>Non-declining softwood and hardwood operable growing stock in both the Mistik and L&amp;M FMA areas</li> <li>≤3% of the 2006 caribou range can be harvested per decade</li> <li>Old and Very old seral stage constraints applied based on targets in VOITs 2a and 2b</li> <li>No identified old forest will be harvested in years 1-20</li> </ol> |
| Effective Date                                                         | 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Harvest unit:                                                          | Mistik and L&M FMA areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Planning horizon:                                                      | 200 yrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Minimum harvest age:                                                   | <ul> <li>100 Years- Black and White Spruce Softwood</li> <li>70 Years- Jack Pine Softwood</li> <li>80 Years- Jack Pine Leading Softwood Mixedwood (SH)</li> <li>90 Years- Spruce Leading Softwood Mixedwood (SH)</li> <li>80 Years- Jack Pine and Spruce Deciduous Mixedwood (HS)</li> <li>70 Years- Hardwood</li> </ul>                                                                                                                                                                                                    |
| Landbase:                                                              | 2016 submitted landbase which includes both Mistik and L&M FMA areas                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Yield curves:                                                          | Yield curves (17 yield curves/development types) based on <b>12.7 cm</b> top diameter utilization standards                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cull deductions:                                                       | Applied to yield curves (1.5% Softwood, 7.4% Hardwood)                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Regeneration transition:                                               | SGR transition rules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Regeneration lag:                                                      | Not applied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Introduce harvest plans:                                               | Not applied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

### TABLE 5.11: CONTROL PARAMETERS - FMS 8



# FIGURE 5.8: RESULTS – FMS 8 TOTAL VOLUME WITH CARIBOU, SERAL STAGE, AND OLD FOREST CONSTRAINTS









### 5.5.9. FMS 9 TOTAL VOLUME WITH CARIBOU, SERAL STAGE, OLD FOREST CONSTRAINTS AND PLANNED BLOCKS

Forest Management Scenario (FMS) 9 is a single landbase approach that maintains an even flow of softwood and hardwood volumes for the entire planning horizon. The parameter settings used in the analysis of this scenario are displayed in Table 5.12. The results of the strategy are illustrated in Figure 5.9. This FMS is used for sensitivity analysis only and does not determine the final HVS or harvest sequence. Planned blocks were forced through the model in this scenario. This was done regardless of operable age or volume as it was assumed these planned blocks had been confirmed to meet criteria for harvesting.

### TABLE 5.12: CONTROL PARAMETERS - FMS 9

| FMS 9: MAXIMIZE TOTAL VOLUME WITH CARIBOU, SERAL STAGE, OLD FOREST, AND PLANNED |  |
|---------------------------------------------------------------------------------|--|
| BLOCKS                                                                          |  |

| CONTROL PARAMETER        | PARAMETER SETTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Objective:               | Maximize total volume harvested over the planning horizon                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Model constraints:       | <ol> <li>Even flow softwood and hardwood volume harvest for the Mistik FMA area</li> <li>Even flow softwood and hardwood volume harvest for the L&amp;M FMA area</li> <li>Non-declining softwood and hardwood operable growing stock in both the Mistik and L&amp;M FMA areas</li> <li>≤3% of the 2006 caribou range can be harvested per decade</li> <li>Old and Very old seral stage constraints applied based on targets in VOITs 2a and 2b</li> <li>No identified old forest will be harvested in years 1-20</li> </ol> |
| Effective Date           | 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Harvest unit:            | Mistik and L&M FMA areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Planning horizon:        | 200 yrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Minimum harvest age:     | <ul> <li>100 Years- Black and White Spruce Softwood</li> <li>70 Years- Jack Pine Softwood</li> <li>80 Years- Jack Pine Leading Softwood Mixedwood (SH)</li> <li>90 Years- Spruce Leading Softwood Mixedwood (SH)</li> <li>80 Years- Jack Pine and Spruce Deciduous Mixedwood (HS)</li> <li>70 Years- Hardwood</li> </ul>                                                                                                                                                                                                    |
| Landbase:                | 2016 submitted landbase which includes both Mistik and L&M FMA areas                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Yield curves:            | Yield curves (17 yield curves/development types) based on <b>12.7 cm</b> top diameter utilization standards                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cull deductions:         | Applied to yield curves (1.5% Softwood, 7.4% Hardwood)                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Regeneration transition: | SGR transition rules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Regeneration lag:        | Not applied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Introduce harvest plans: | Planned blocks applied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



# FIGURE 5.9: RESULTS – FMS 9 TOTAL VOLUME WITH CARIBOU, SERAL STAGE, OLD FOREST CONSTRAINTS AND PLANNED BLOCKS









### 5.5.10. FMS 10 TOTAL VOLUME WITH CARIBOU, SERAL STAGE, OLD FOREST CONSTRAINTS AND PLANNED/TACTICAL BLOCKS

Forest Management Scenario (FMS) 10 is a single landbase approach that maintains an even flow of softwood and hardwood volumes for the entire planning horizon. The parameter settings used in the analysis of this scenario are displayed in Table 5.13. The results of the strategy are illustrated in Figure 5.10. This FMS is used for sensitivity analysis only and does not determine the final HVS or harvest sequence. The tactical plan was forced through the model in this scenario. This was done regardless of operable age or volume as the Tactical Plan was used during the consultation process and Mistik and L&M will be measured with respect to adherence to it.

# TABLE 5.13: CONTROL PARAMETERS - FMS 10

| FMS 10: MAXIMIZE TOTAL VOLUME WITH CARIBOU, SERAL STAGE, OLD FOREST AND<br>PLANNED/TACTICAL BLOCKS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONTROL PARAMETER                                                                                  | PARAMETER SETTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Objective:                                                                                         | Maximize total volume harvested over the planning horizon                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Model constraints:                                                                                 | <ol> <li>Even flow softwood and hardwood volume harvest for the Mistik FMA area</li> <li>Even flow softwood and hardwood volume harvest for the L&amp;M FMA area</li> <li>Non-declining softwood and hardwood operable growing stock in both the Mistik and L&amp;M FMA areas</li> <li>≤3% of the 2006 caribou range can be harvested per decade</li> <li>Old and Very old seral stage constraints applied based on targets in VOITs 2a and 2b</li> <li>No identified old forest will be harvested in years 1-20</li> </ol> |
| Effective Date                                                                                     | 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Harvest unit:                                                                                      | Mistik and L&M FMA areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Planning horizon:                                                                                  | 200 yrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Minimum harvest age:                                                                               | <ul> <li>100 Years- Black and White Spruce Softwood</li> <li>70 Years- Jack Pine Softwood</li> <li>80 Years- Jack Pine Leading Softwood Mixedwood (SH)</li> <li>90 Years- Spruce Leading Softwood Mixedwood (SH)</li> <li>80 Years- Jack Pine and Spruce Deciduous Mixedwood (HS)</li> <li>70 Years- Hardwood</li> </ul>                                                                                                                                                                                                    |
| Landbase:                                                                                          | 2016 submitted landbase which includes both Mistik and L&M FMA areas                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Yield curves:                                                                                      | Yield curves (17 yield curves/development types) based on <b>12.7</b> cm top diameter utilization standards                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cull deductions:                                                                                   | Applied to yield curves (1.5% Softwood, 7.4% Hardwood)                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Regeneration transition:                                                                           | SGR transition rules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Regeneration lag:                                                                                  | Not applied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Introduce harvest plans:                                                                           | Planned and tactical blocks applied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |





∭ silvacom™







# 5.5.11. FMS 11 TOTAL VOLUME WITH CARIBOU, SERAL STAGE, OLD FOREST, L&M BLACK SPRUCE CONSTRAINTS, AND PLANNED/TACTICAL BLOCKS

Forest Management Scenario (FMS) 11 is a single landbase approach that maintains an even flow of softwood and hardwood volumes for the entire planning horizon. The parameter settings used in the analysis of this scenario are displayed in Table 5.14. The results of the strategy are illustrated in Figure 5.11. This FMS was determined to be the selected management strategy (SMS) as it maintained the desired harvest flows while also satisfying the non-timber constraints.

### TABLE 5.14: CONTROL PARAMETERS - FMS 11

#### FMS 11: MAXIMIZE TOTAL VOLUME WITH CARIBOU, SERAL STAGE, OLD FOREST, BLACK SPRUCE AND PLANNED/TACTICAL BLOCKS CONSTRAINTS

| CONTROL PARAMETER        | PARAMETER SETTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Objective:               | Maximize total volume harvested over the planning horizon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Model constraints:       | <ol> <li>Even flow softwood and hardwood volume harvest for the Mistik FMA area</li> <li>Even flow softwood and hardwood volume harvest for the L&amp;M FMA area</li> <li>Non-declining softwood and hardwood operable growing stock in both the Mistik and L&amp;M FMA areas</li> <li>≤3% of the 2006 caribou range can be harvested per decade</li> <li>Old and Very old seral stage constraints applied based on targets in VOITs 2a and 2b</li> <li>No identified old forest will be harvested in years 1-20</li> <li>Limit black spruce harvest to ≤ 30,000 m<sup>3</sup>/yr in L&amp;M</li> </ol> |
| Effective Date           | 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Harvest unit:            | Mistik and L&M FMA areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Planning horizon:        | 200 yrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Minimum harvest age:     | <ul> <li>100 Years- Black and White Spruce Softwood</li> <li>70 Years- Jack Pine Softwood</li> <li>80 Years- Jack Pine Leading Softwood Mixedwood (SH)</li> <li>90 Years- Spruce Leading Softwood Mixedwood (SH)</li> <li>80 Years- Jack Pine and Spruce Deciduous Mixedwood (HS)</li> <li>70 Years- Hardwood</li> </ul>                                                                                                                                                                                                                                                                                |
| Landbase:                | 2016 submitted landbase which includes both Mistik and L&M FMA areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Yield curves:            | Yield curves (17 yield curves/development types) based on <b>12.7</b> cm top diameter utilization standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Cull deductions:         | Applied to yield curves (1.5% Softwood, 7.4% Hardwood)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Regeneration transition: | SGR transition rules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Regeneration lag:        | Not applied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Introduce harvest plans: | Planned and tactical blocks applied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



# FIGURE 5.11: RESULTS – FMS 11 TOTAL VOLUME WITH CARIBOU, SERAL STAGE, OLD FOREST, BLACK SPRUCE CONSTRAINTS AND PLANNED/TACTICAL BLOCKS



∭ silvacom™







# 5.5.12. FMS 11 (SPATIAL, 12.7 CM TOP DIAMETER) TOTAL VOLUME WITH CARIBOU, SERAL STAGE, OLD FOREST, L&M BLACK SPRUCE CONSTRAINTS, AND PLANNED/TACTICAL BLOCKS

Forest Management Scenario (FMS) 11 is a single landbase approach that maintains an even flow of softwood and hardwood volumes for the entire planning horizon. The parameter settings used in the analysis of this scenario are displayed in Table 5.14. The results of the strategy are illustrated in Figure 5.11. This FMS was determined to be the selected management strategy (SMS) as it maintained the desired harvest flows while also satisfying the non-timber constraints.

# TABLE 5.15: CONTROL PARAMETERS - FMS 11 (12.7 CM, SPATIAL)

#### FMS 11: MAXIMIZE TOTAL VOLUME WITH CARIBOU, SERAL STAGE, OLD FOREST, BLACK SPRUCE AND PLANNED/TACTICAL BLOCKS CONSTRAINTS (12.7 CM, SPATIAL

| CONTROL PARAMETER        | PARAMETER SETTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Objective:               | Maximize total volume harvested over the planning horizon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Model constraints:       | <ol> <li>Even flow softwood and hardwood volume harvest for the Mistik FMA area</li> <li>Even flow softwood and hardwood volume harvest for the L&amp;M FMA area</li> <li>Non-declining softwood and hardwood operable growing stock in both the Mistik and L&amp;M FMA areas</li> <li>≤3% of the 2006 caribou range can be harvested per decade</li> <li>Old and Very old seral stage constraints applied based on targets in VOITs 2a and 2b</li> <li>No identified old forest will be harvested in years 1-20</li> <li>Limit black spruce harvest to ≤ 30,000 m<sup>3</sup>/yr in L&amp;M</li> </ol> |
| Effective Date           | 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Harvest unit:            | Mistik and L&M FMA areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Planning horizon:        | 200 yrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Minimum harvest age:     | <ul> <li>100 Years- Black and White Spruce Softwood</li> <li>70 Years- Jack Pine Softwood</li> <li>80 Years- Jack Pine Leading Softwood Mixedwood (SH)</li> <li>90 Years- Spruce Leading Softwood Mixedwood (SH)</li> <li>80 Years- Jack Pine and Spruce Deciduous Mixedwood (HS)</li> <li>70 Years- Hardwood</li> </ul>                                                                                                                                                                                                                                                                                |
| Landbase:                | 2016 submitted landbase which includes both Mistik and L&M FMA areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Yield curves:            | Yield curves (17 yield curves/development types) based on <b>12.7 cm</b> top diameter utilization standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Cull deductions:         | Applied to yield curves (1.5% Softwood, 7.4% Hardwood)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Regeneration transition: | SGR transition rules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Regeneration lag:        | Not applied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Introduce harvest plans: | Planned and tactical blocks applied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



#### FIGURE 5.12: RESULTS – FMS 11 SPATIAL WITH 12.7 CM TOP DIAMETER








#### 5.6. TACTICAL PLAN

The purpose of the tactical plan is to provide the general public, Saskatchewan Environment, Mistik, and L&M with a clear definition of the location, extent and profile of forest stands potentially scheduled for harvest and the location of the supporting access network that is potentially scheduled for construction within the active portion of the 2017 20-Year FMP (2017 to 2037). The tactical plan also provides a critical linkage between the strategic-level modeled Selected Management Strategy and actual operational plans.

Mistik and L&M have designed a tactical harvest and access plan (Map 5.1) for the period 2017 to 2037 comprised of two harvest pools (T1 and T2). For each of the two harvest pools (referred to as 'T1' and 'T2', respectively), Mistik and L&M have planned more area and volume than will be harvested. The additional planned area and volume allows for required flexibility in selection of harvest locations. In the wood supply model, a priority was given to the T1 harvest pool to be harvested first.

A profile of the tactical plan is presented in Figure 5.13 with the volumes, areas, and age class<sup>16</sup> distribution by T1 and T2.

In addition to the tactical plan there were some planned blocks in both Mistik and L&M that were outside of the tactical plan (Table 5.16).

| Planned Block Summary                                |        |        |  |  |  |  |  |
|------------------------------------------------------|--------|--------|--|--|--|--|--|
| Mistik L&M                                           |        |        |  |  |  |  |  |
| Planned Area (ha)                                    | 837    | 147    |  |  |  |  |  |
| Planned Current<br>Softwood Volume (m <sup>3</sup> ) | 37,913 | 10,256 |  |  |  |  |  |
| Planned Current<br>Hardwood Volume (m <sup>3</sup> ) | 48,803 | 4,277  |  |  |  |  |  |

#### TABLE 5.16: PLANNED BLOCK AREA AND VOLUME SUMMARY

<sup>&</sup>lt;sup>16</sup> Age class distributions were created using the modeled landbase areas



#### FIGURE 5.13: TACTICAL PLAN PROFILE

| HVS Summary Table                    |                                  | Tactical Plan Initial Development Type Distribution |                     |         |        |        |         |          |         |
|--------------------------------------|----------------------------------|-----------------------------------------------------|---------------------|---------|--------|--------|---------|----------|---------|
|                                      |                                  |                                                     |                     | T1 Are  | a (ha) | T2 Are | ea (ha) | Total Ar | ea (ha) |
|                                      | Mistik                           | L&M                                                 | Development Type    | Mistik  | L&M    | Mistik | L&M     | Mistik   | L&M     |
|                                      |                                  |                                                     | No Development Type | 17,899  | 849    | 9,090  | 1,254   | 26,989   | 2,103   |
|                                      |                                  |                                                     | 1 S-WS-A-A          | 4,697   | 1,143  | 2,436  | 493     | 7,159    | 1,636   |
|                                      |                                  |                                                     | 2 S-BS-A-A          | 644     | 2,533  | 387    | 1,804   | 1,046    | 4,338   |
| Tactical Plan<br>Area (ha)           | T1 - 140,137<br>T2 - 78,218      | T1 - 18,497<br>T2 - 12,126                          | 3 S-JP-LD-A-1       | 4,744   | 0      | 3,733  | 0       | 8,478    | 0       |
|                                      |                                  |                                                     | 4 S-JP-LD-A-2       | 4,763   | 0      | 2,738  | 0       | 7,501    | 0       |
|                                      |                                  |                                                     | 5 S-JP-HD-A-1       | 6,469   | 0      | 5,784  | 0       | 12,254   | 0       |
|                                      |                                  |                                                     | 6 S-JP-HD-A-2       | 9,719   | 0      | 6,376  | 0       | 16,114   | 0       |
|                                      | T1 - 5,586,622<br>T2 - 3,688,602 | T1 - 1,985,417<br>T2 - 1,087,511                    | 7 S-JP-L&M          | 0       | 6,681  | 0      | 4,046   | 0        | 10,726  |
|                                      |                                  |                                                     | 8 SH-JP-A-A         | 3,148   | 1,605  | 2,100  | 783     | 5,253    | 2,388   |
| Tactical Plan<br>Current             |                                  |                                                     | 9 SH-WS-A-A         | 3,000   | 828    | 1,873  | 326     | 4,867    | 1,154   |
| Softwood<br>Volume (m <sup>3</sup> ) |                                  |                                                     | 10 HS-WS-A-A        | 8,532   | 1,438  | 4,091  | 477     | 12,653   | 1,915   |
| . ,                                  |                                  |                                                     | 11 HS-JP-A-A        | 3,393   | 1,128  | 2,535  | 422     | 5,940    | 1,549   |
|                                      |                                  |                                                     | 12 H-A-LD-A-1       | 3,355   | 41     | 2,000  | 259     | 5,341    | 301     |
|                                      |                                  |                                                     | 13 H-A-LD-A-2       | 8,933   | 276    | 3,908  | 446     | 12,840   | 722     |
| Tactical Plan<br>Current<br>Hardwood |                                  |                                                     | 14 H-A-HD-A-1       | 10,736  | 357    | 6,489  | 497     | 17,199   | 855     |
|                                      | T1 - 15 773 412                  | T1 - 1 101 367                                      | 15 H-A-HD-A-2       | 29,843  | 898    | 14,256 | 523     | 44,116   | 1,421   |
|                                      | T2 - 8,320,060                   | T2 - 739,050                                        | 16 H(S)-A-LD-A      | 7,484   | 377    | 3,223  | 353     | 10,707   | 730     |
| volume (m <sup>2</sup> )             |                                  |                                                     | 17 H(S)-A-HD-A      | 12,779  | 342    | 7,199  | 443     | 19,978   | 785     |
|                                      |                                  |                                                     | Total Area (ha)     | 140,137 | 18,497 | 78,218 | 12,126  | 218,438  | 30,622  |



#### MISTIK MANAGEMENT LTD. 2019 FOREST ESTATE MODELING





© Mistik Management Ltd.

March 2019







### 6. SELECTED MANAGEMENT STRATEGY

The Forest Management Scenario (FMS) that has been identified as the Selected Management Strategy (SMS) for the Mistik FMP area was chosen on its ability to achieve specific goals and objectives by the planning team. This section displays how the SMS (FMS 11 with 10 cm top diameter utilization standards) harvest sequence and modeled management actions fulfill these goals and objectives as well as the required outputs described in the 2017 Forest Management Planning Standard.

#### 6.1. SPATIAL PARAMETERS

The FMS that was selected as the SMS by the planning team was FMS 11. However, RSPS provides the optimal solution by analyzing a complex set of problems directed towards achieving the desired future forest conditions; RSPS solutions are aspatial. Spatial Optimizer on the other hand, implements RSPS solutions spatially, subject to any additional spatial constraints. As it was necessary for the Natural Forest Patterns to have a spatial assignment of the harvest schedule it was necessary to implement the RSPS solution within Spatial Optimizer.

The harvest sequence was constrained in Spatial Optimizer by several factors outlined in Table 6.1.

| HARVEST SEQUENCE ASSUMPTIONS |                                                                                                                                                                                  |  |  |  |  |  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Goal:                        | Assess the spatial harvesting sequence of the timber supply model                                                                                                                |  |  |  |  |  |
| SMS Scenario<br>Description  | FMS 11 – Maximize Total Volume, Even flow harvest, Non Declining GS, Force<br>Planned and Tactical Blocks, Seral Stage, Caribou, and Old Forest, and Black<br>Spruce Constraints |  |  |  |  |  |
| Spatial Simulation length    | 70 year                                                                                                                                                                          |  |  |  |  |  |
| Minimum block size           | NONE*                                                                                                                                                                            |  |  |  |  |  |
| Target block size            | 50 ha                                                                                                                                                                            |  |  |  |  |  |
| Maximum block size           | 1,000 ha                                                                                                                                                                         |  |  |  |  |  |

#### TABLE 6.1: SPATIAL RULES FOR SPATIAL OPTIMIZER RUN

\*As the tactical plan was already incorporated within the model a minimum block size was not assigned.

Following the assignment of the harvest schedule to polygons using Spatial Optimizer it was necessary to run the results back through RSPS to update the harvest profiles. The following model parameters in Table 6.2 were the settings used in RSPS to produce the final harvest profiles (Figure 6.1, Figure 6.2, and Figure 6.3).



#### **6.2. MODEL PARAMETERS**

The parameter settings used in the analysis of this scenario are displayed in Table 6.2.

## TABLE 6.2: CONTROL PARAMETERS - SMS TOTAL VOLUME WITH CARIBOU, SERALSTAGE, OLD FOREST CONSTRAINTS AND THE PLANNED/TACTICAL BLOCKS

#### SMS: MAXIMIZE TOTAL VOLUME WITH CARIBOU, SERAL STAGE, OLD FOREST AND PLANNED/TACTICAL BLOCKS WITH 12.7 CM TOP DIAMETER

| CONTROL PARAMETER        | PARAMETER SETTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Objective:               | Maximize total volume harvested over the planning horizon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Model constraints:       | <ol> <li>Even flow softwood and hardwood volume harvest for the Mistik FMA area</li> <li>Even flow softwood and hardwood volume harvest for the L&amp;M FMA area</li> <li>Non-declining softwood and hardwood operable growing stock in both the Mistik and L&amp;M FMA areas</li> <li>≤3% of the 2006 caribou range can be harvested per decade</li> <li>Old and Very old seral stage constraints applied based on targets in VOITs 2a and 2b</li> <li>No identified old forest will be harvested in years 1-20</li> <li>Limit black spruce harvest to ≤ 30,000 m³/yr in L&amp;M</li> </ol> |  |  |  |  |
| Effective Date           | 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Harvest unit:            | Mistik and L&M FMA areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Planning horizon:        | 200 yrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Minimum harvest age:     | <ul> <li>100 Years- Black and White Spruce Softwood</li> <li>70 Years- Jack Pine Softwood</li> <li>80 Years- Jack Pine Leading Softwood Mixedwood (SH)</li> <li>90 Years- Spruce Leading Softwood Mixedwood (SH)</li> <li>80 Years- Jack Pine and Spruce Deciduous Mixedwood (HS)</li> <li>70 Years- Hardwood</li> </ul>                                                                                                                                                                                                                                                                     |  |  |  |  |
| Landbase:                | 2016 submitted landbase which includes both Mistik and L&M FMA areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Yield curves:            | Yield curves (17 yield curves/development types) based on <b>10 cm</b> top diameter utilization standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Cull deductions:         | Applied to yield curves (1.5% Softwood, 7.4% Hardwood)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Regeneration transition: | SGR transition rules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Regeneration lag:        | Not applied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Introduce harvest plans: | Planned and tactical blocks applied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |

#### 6.3. HARVEST PROFILE

The spatial harvest volume results of the SMS for both Mistik and L&M are displayed in Figure 6.1 below.

#### FIGURE 6.1: HARVEST VOLUME RESULTS – SELECTED MANAGEMENT STRATEGY





#### MISTIK MANAGEMENT LTD. 2019 FOREST ESTATE MODELING







#### 6.3.1. HARVEST PROFILE BY PLANNING UNIT

The following figure displays the harvest profile (HVS) for each planning unit within the plan area.

#### FIGURE 6.2: SMS HARVEST VOLUME RESULTS BY PLANNING UNIT

| SELECTED MANAGEMENT STRATEGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| PLANNING UN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| PLANNING UNIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | METRIC                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Net Productive Area                                                             | 99,326 ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| DIVIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Average SWD HVS Level                                                           | 63,198 m³/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Average HWD HVS Level                                                           | 179,921 m³/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Net Productive Area                                                             | 137,558 ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| WEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Average SWD HVS Level                                                           | 90,024 m³/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Average HWD HVS Level                                                           | 222,096 m³/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Net Productive Area                                                             | 305,333 ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| CENTRAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Average SWD HVS Level                                                           | 218,605 m³/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Average HWD HVS Level                                                           | 355,533 m³/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Net Productive Area                                                             | 275,066 ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| NORTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Average SWD HVS Level                                                           | 178,141 m³/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Average HWD HVS Level                                                           | 242,203 m³/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Net Productive Area                                                             | 61,226 ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| L & M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Average SWD HVS Level                                                           | 79,429 m³/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Average HWD HVS Level                                                           | 49,899 m³/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| DIVIDE HARVEST FLOWS (M <sup>3</sup> /YR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WEST HARVEST FLOWS                                                              | (M <sup>3</sup> /YR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| 400,000<br>350,000<br>250,000<br>150,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>5 | 500,000<br>400,000<br>300,000<br>200,000<br>100,000<br>0<br>5 か か か か か か か か か | <sup>5</sup> ψ <sup>5</sup> <sup>4</sup> |  |  |  |





#### 6.3.2. RETENTION ADJUSTMENT

As previously mentioned, the retention is being applied as an HVS adjustment. The table below outlines the modeled HVS for softwood and hardwood from the SMS in both the Mistik and L&M FMAs along with the adjusted HVS following retention adjustment. Based on the VOIT<sup>17</sup> there is a minimum of 4% in block retention with proximal retention. The final adjusted HVS is dependent on the amount of in-block versus proximal retention.

| TABLE 6.3: MISTIK AND L&M HVS WITH RET | <b>FENTION</b> |
|----------------------------------------|----------------|
|----------------------------------------|----------------|

|                                  | Harvest Volume Schedule (m <sup>3</sup> /yr) |          |          |          |  |  |  |  |
|----------------------------------|----------------------------------------------|----------|----------|----------|--|--|--|--|
| <b>Retention Adjustment</b>      | Mi                                           | istik    | L&M      |          |  |  |  |  |
|                                  | Softwood                                     | Hardwood | Softwood | Hardwood |  |  |  |  |
| Modeled HVS                      | 549,986                                      | 999,753  | 79,429   | 49,899   |  |  |  |  |
| Modeled HVS with 4%<br>Retention | 527,987                                      | 959,763  | 76,252   | 47,903   |  |  |  |  |

<sup>&</sup>lt;sup>17</sup> VOIT #4: Tree retention after harvest. Described in the 2019 Values, Objectives, Indicators, and Targets document.



#### 6.3.3. HVS AND HVS PULP SUMMARY

As requested by the MOE, the following summary outlines the saw log, pulp, and total volumes for both hardwood and softwood for each company based on the selected management strategy. The final softwood saw log HVS is calculated from reducing the retention and then applying the factor for softwood degrade (Table 6.4). The volume-weighted softwood saw log degrade is 12% for Mistik and 9% for L&M (see Volume III, Section 2.3.1, for more details). The final softwood pulp HVS is calculated from the combination of the volume removed from the softwood degrade and tops / additional merchantable trees (Table 6.4). The tops / additional merchantable trees volume was calculated using a ration based on the softwood HVS of Scenario 2 (7.5 cm top) versus the softwood HVS of Scenario 1 (10 cm top). The ratio between the Mistik softwood HVS of the two scenarios is 26.89% and between the L&M softwood HVS is 17.41%.

|                                                      | Misti              | k FMA HVS (r     | n³/yr)   | L&M FMA HVS (m³/yr) |                  |          |  |
|------------------------------------------------------|--------------------|------------------|----------|---------------------|------------------|----------|--|
| Result                                               | Softwood<br>Sawlog | Softwood<br>Pulp | Hardwood | Softwood<br>Sawlog  | Softwood<br>Pulp | Hardwood |  |
| SMS Model Result                                     | 549,986            | N/A              | 999,753  | 79,429              | N/A              | 49,899   |  |
| Reduction for Insular<br>Retention (4%)              | -21,999            | N/A              | -39,990  | -3,177              | N/A              | -1,996   |  |
| Weighted Average<br>Degrade (Mistik: 12%,<br>L&M 9%) | -63,358            | 63 <i>,</i> 358  | N/A      | -6,863              | 6,863            | N/A      |  |
| Tops (10cm to 8cm) and additional merch. trees       | N/A                | 124,920          | N/A      | N/A                 | 12,077           | N/A      |  |
| Final HVS (m <sup>3</sup> /yr)                       | 464,628            | 188,278          | 959,763  | 69,389              | 18,940           | 47,903   |  |

#### TABLE 6.4: SAW LOG AND PULP

#### 6.4. FUTURE FOREST CONDITION

Table 6.3 through Table 6.7 display the species group and age class distribution of the entire Mistik FMA net productive area for the current forest and into the future as modeled in the Selected Management Strategy for years 0 (current), 10, 20, 50, 100, and 200. Table 6.8 displays the operable area for years 0 (current), 10, 20, 50, 100, and 200 in the Mistik FMA. Table 6.9 through Table 6.11 display the species group and age class distribution of the entire L&M FMA net productive area for the current forest and into the future as modeled in the Selected Management Strategy for years 0 (current), 10, 20, 50, 100, and 200. Table 6.12 displays the operable area years 0 (current), 10, 20, 50, 100, and 200. Table 6.12 displays the operable area years 0 (current), 10, 20, 50, 100, and 200 in the L&M FMA.





#### MISTIK MANAGEMENT LTD. 2019 FOREST ESTATE MODELING

## TABLE 6.7: MISTIK AGE CLASS DISTRIBUTION BY SPECIES GROUP FOR THE OPERABLE AREA: YEAR 100 AND YEAR200



#### TABLE 6.8: MISTIK SMS OPERABLE AREA BY SPECIES GROUP

|                                 | Time Period Area (ha) |         |         |         |          |          |  |  |
|---------------------------------|-----------------------|---------|---------|---------|----------|----------|--|--|
| Species Group                   | Current Forest        | Year 10 | Year 20 | Year 50 | Year 100 | Year 200 |  |  |
| Softwood                        | 54,651                | 67,051  | 103,279 | 54,925  | 80,283   | 112,207  |  |  |
| Softwood Dominated<br>Mixedwood | 6,045                 | 6,243   | 16,749  | 16,086  | 24,241   | 22,141   |  |  |
| Hardwood Dominated<br>Mixedwood | 12,881                | 11,810  | 25,087  | 10,004  | 4,069    | 5,420    |  |  |
| Hardwood                        | 88,670                | 109,855 | 147,797 | 66,553  | 45,218   | 17,219   |  |  |
| Total Area (ha)                 | 162,247               | 194,959 | 292,912 | 147,568 | 153,811  | 156,987  |  |  |







#### TABLE 6.12: L&M SMS OPERABLE AREA BY SPECIES GROUP

|                                 | Time Period Area (ha) |         |         |         |          |          |  |  |  |
|---------------------------------|-----------------------|---------|---------|---------|----------|----------|--|--|--|
| Species Group                   | Current Forest        | Year 10 | Year 20 | Year 50 | Year 100 | Year 200 |  |  |  |
| Softwood                        | 11,795                | 12,820  | 13,064  | 12,144  | 5,976    | 7,400    |  |  |  |
| Softwood Dominated<br>Mixedwood | 1,970                 | 2,500   | 3,614   | 3,171   | 457      | 680      |  |  |  |
| Hardwood Dominated<br>Mixedwood | 2,081                 | 2,343   | 2,856   | 653     | 690      | 438      |  |  |  |
| Hardwood                        | 4,255                 | 4,659   | 4,771   | 841     | 3,561    | 2,424    |  |  |  |
| Total Area (ha)                 | 20,101                | 22,322  | 24,305  | 16,810  | 10,684   | 10,943   |  |  |  |



#### 6.5. WOODLAND CARIBOU ANALYSIS

One of the targets that was utilized within the model is the total harvested area within the 2006 caribou ranges. Within a ten-year period, the total area harvested will not exceed 3% of the total area of all woodland caribou ranges combined. The following figure displays the results of the selected management strategy against the 3% target.

#### FIGURE 6.3: CARIBOU RANGE HARVEST





#### 6.6. PIECE SIZE ANALYSIS

Analysis was completed to identify a piece size profile of the Selected Management Strategy 20-Year harvest sequence. The next four pages display the estimated piece size profile for the 20-year harvest sequence by 5-year period. Appendix D displays the 20-year estimated piece size of the sequence by development type. This analysis was completed using the cruising strata estimates derived from the Mistik Volume Sampling Program. Only plots that contributed to the development of the yield curves were used to determine the strata estimates. To provide better estimates at a development type resolution, some cruise stratums were further refined, including:

- Development productivity class and significant softwood identifiers were added to the hardwood stratums;
- Development productivity class was added to the softwood jack pine development types;
- Mixedwood cruise stratums were redefined as hardwood/softwood or softwood/hardwood;
- Finally, the mixedwood cruise stratums were also assigned a leading conifer of either jack pine or white spruce.



## 7. NATURAL FOREST PATTERNS

Natural Forest Patterns (NFP) are the natural patterns created across the forest landscape. The NFPs that were analysed within the FMP were based on both processes from the previous FMP developed by David Andison and from the planning standard.

### 7.1. EVENT SIZE

Harvest event size is the overall disturbance size of harvest events. The purpose of harvest event size targets is to emulate the natural disturbance size distribution across the landscape. The process to determine the range of variation of the natural and anthropogenic disturbance size distribution for the landscape is determined by the process developed by David Andison (Andison 2005, 2006a and 2006b).



FIGURE 7.1: COMBINING ADJACENT STANDS INTO A SINGLE EVENT PATCH



#### FIGURE 7.2: CLUSTERING OF PATCHES INTO A COMMON EVENT

The event size distribution for the SMS is summarized by the planning standard classes in Table 7.1 and Table 7.2 below.



| 0-100                           | Number                 | Area (ha)                                        |
|---------------------------------|------------------------|--------------------------------------------------|
| 0-100                           |                        |                                                  |
|                                 | 1018                   | 20,050                                           |
| 101-1500                        | 143                    | 40,654                                           |
| 1501-3500                       | 5                      | 9,552                                            |
| 3500-8000                       | 2                      | 11,491                                           |
| >8000                           | 0                      | 0                                                |
|                                 | 1,168                  | 81,747                                           |
| Event Size Dis                  | stribution             |                                                  |
| 14%<br>2%<br>50<br>Medium Large | 24%                    |                                                  |
|                                 | 50<br>Medium 🔳 Large 🖣 | 50%<br>Medium E Large Very Large Extremely Large |



# TABLE 7.2: EVENT SIZE DISTRIBUTION FOR THE SELECTED MANAGEMENT STRATEGY IN YEARS 6-10

| Event Size Classes | Sizo Pongo (ha)                       | Even       | ts        |
|--------------------|---------------------------------------|------------|-----------|
| Event Size Classes | Size Kalige (lia)                     | Number     | Area (ha) |
| Small              | 0-100                                 | 1047       | 16,123    |
| Medium             | 101-1500                              | 130        | 48,256    |
| Large              | 1501-3500                             | 5          | 9,990     |
| Very Large         | 3500-8000                             | 0          | 0         |
| Extremely Large    | >8000                                 | 0          | 0         |
| Tota               | 1                                     | 1,182      | 74,369    |
|                    | Event Size Di                         | stribution |           |
| = Sn               | 13%<br>65%<br>nall = Medium = Large = | 22%        |           |

As described above in section 3.10.3, the target for event size is that over the next 10 years, at least 25% of all harvested areas will create disturbance events at least 1,000 ha in size. The table below displays the area and percent of event sizes less and greater than 1,000 ha in size.

#### TABLE 7.3: EVENT SIZE SUMMARY YEARS 1-10

| Event Size Classes | Area (ha) | Percent (%) |
|--------------------|-----------|-------------|
| Under 1,000 ha     | 50,053    | 67%         |
| Over 1,000 ha      | 24,315    | 33%         |
| Total              | 74,369    | 100%        |



#### 7.2. SERAL STAGE

As mentioned above, the seral stage strategy developed for the Mistik FMP area and implemented in the Selected Management Strategy focuses on the retention of sufficient, effective, and high quality late seral stage (old + very old) stands across the entire landbase. The strategy affects two main VOITs (VOITs 1.1.1.1 (2a) and 1.1.1.1 (2b)). These VOITs maintain specific targeted area of old and very old forested area described in section 3.10.1.

Reporting carried out on the Selected Management Strategy late seral stage retention strategy includes:

• The productive area in late seral stage trend over the entire planning horizon for each cover group: Table 7.4;

The operable and eligible non-operable productive late seral stage area by age class and cover group over the entire planning horizon: Table 7.5.



#### TABLE 7.4: SELECTED MANAGEMENT STRATEGY LATE SERAL STAGE PRODUCTIVE AREA RETENTION AMOUNTS



\*Note: Green shading indicates that late seral threshold has been met.





© Mistik Management Ltd.

March 2019



#### 7.3. INTERIOR OLD FOREST

The interior old forest strategy for FMA area ensures that a minimum of 20% of the old and very old forest stands in each species group will be in the interior forest condition.

Interior old forest is determined using the following process:

- Total old + very old stands are dissolved into contiguous polygons;
- "Edge effect buffer zones" for the old + very old stands are calculated:
  - 60 meters, where the adjacent area is non-forested or a forested stand that is less than 40 years old;
  - O meters, where the adjacent forest stand is ≥ 40 years and younger than mature forest (described in Table 3.9); and
  - Zero meters where the adjacent stand is mature, old or very old forest;
- The "edge effect buffer zones" are deducted from the old + very old polygons; and
- The species attributes are assigned back to the old + very old polygons with their interior forest attributes.

The figure below displays the current interior old forest and the amount of interior old forest at the end of the plan (year 20). Currently there is 20% interior old forest and by year 20 there is 27% interior old forest (Figure 7.3).



FIGURE 7.3: CURRENT AND YEAR 20 INTERIOR OLD FOREST



#### 7.4. RETENTION

As previously mentioned, the retention is being applied as an HVS adjustment (6-9%, section 3.10.2 and 6.3.2). Table 6.3 outlines the modeled HVS for softwood and hardwood from the SMS in both the Mistik and L&M FMAs along with the adjusted HVS ranges.

#### 7.5. OLD FOREST PATCH SIZE

As previously mentioned, the old forest patch size targets were developed using Dr. David Andison's "Pre-Industrial Forest Condition Analysis" (Andison, 2007). There are three targets for old forest patch size based on the Andison analysis. These targets include:

- 1. Large Old forest Patches:
  - a. Maintain the number of old forest patches larger than 500 ha on the Mistik FMA at three or greater over the next 10 years.
- 2. Small Old forest Patches:
  - a. The proportion of old forest area in patches smaller than 50 ha should be between 60-75% over the next ten years.
- 3. Operable forest in Large Old forest Patches:
  - a. For the next 10 years, the proportion of operable forest in each of the five largest old forest patches shall not be less than 20%.

The results of the current old forest patch size and the old forest patch size based on the first 10 years of proposed harvesting are displayed in Table 7.6 below.



# TABLE 7.6: OLD FOREST PATCH SIZE DISTRIBUTION FOR THE SELECTEDMANAGEMENT STRATEGY





### 8. SALVAGE HARVESTING

If there is a natural disturbance event within either of the FMAs salvage harvest activities will follow the following guidelines to ensure that a portion of the harvested area remains in an unsalvaged state. This section describes Mistik's plans in the potential case of salvage harvesting but it should be noted that salvage harvesting was not included in the model.

### 8.1. SALVAGE HARVEST TIMING

All salvage harvesting activities will occur within two operating years of the date on which the natural disturbance occurred, unless otherwise approved in an operating plan.

#### 8.2. SALVAGE HARVEST RETENTION CRITERIA

At a minimum, within each salvage harvest event there will be a single contiguous area covering at least 20% of the disturbance area that will be retained from harvesting activities. This retained area will be:

- Free of roads, trails and skid trails; and
- Be composed of tree species representative of the merchantable timber burned or damaged.

#### 8.2.1. RETENTION ARRANGEMENT

For safety concerns, residuals shall be left in clumps, islands and proximal retention. As mentioned above, a single contiguous area covering at least 20% of the disturbance area shall be retained unless an alternate spatial arrangement is approved by the Forest Service Branch. The alternate spatial arrangements may:

- Be comprised of multiple discrete areas adding up to 20% of the disturbance area; and
- Vary from tree residual targets, for reasons of forest health.

#### 8.2.2. LIVE TREE RETENTION

During salvage harvest events there will be efforts to utilize live tree retention criteria to promote the ecological integrity of regenerating stands. If there are not live trees available for retention burned or damaged trees will be used to meet the retention targets.



### **APPENDIX A: ROTATION AGE ANALYSIS**

| ROTATION AGE ANALYSIS |                     |                               |            |                         |                                        |                                                         |                             |                             |                             |                             |                             |                             |                             |                             |                             |
|-----------------------|---------------------|-------------------------------|------------|-------------------------|----------------------------------------|---------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
|                       |                     | Mistik Suggested Rotation Age |            | Calculated Rotation Age |                                        | Literature Suggested Rotation Age                       |                             |                             |                             |                             |                             |                             |                             |                             |                             |
| Development Type      | Strata Area<br>(ha) | Minimum Age                   | Target Age | Peak MAI Age            | Total Area<br>Weighted<br>Rotation Age | Area<br>Weighted by<br>Species<br>Group<br>Rotation Age | Reference 1<br>Rotation Age | Reference 2<br>Rotation Age | Reference 3<br>Rotation Age | Reference 4<br>Rotation Age | Reference 5<br>Rotation Age | Reference 6<br>Rotation Age | Reference 7<br>Rotation Age | Reference 8<br>Rotation Age | Reference 9<br>Rotation Age |
| 1-S-WS-A-A            | 24,446              | 100                           | 120        | 90                      | 70                                     | 70                                                      | 70-110                      | N/A                         | N/A                         | 90                          | 70-80                       | N/A                         | 80                          | 70-80                       | N/A                         |
| 2-S-BS-A-A            | 23,672              | 100                           | 120        | 60                      | 70                                     | 70                                                      | 80-130                      | N/A                         | N/A                         | N/A                         | 95-132                      | 60-120                      | 80                          | 75-129                      | 60-80                       |
| 3-S-JP-LD-A-1         | 95,057              | 70                            | 80         | 80                      | 70                                     | 70                                                      | 50-90                       | N/A                         | N/A                         | N/A                         | 60-80                       | N/A                         | 80                          | 67-77                       | N/A                         |
| 4-S-JP-LD-A-2         | 30,770              | 70                            | 80         | 80                      | 70                                     | 70                                                      | 50-90                       | N/A                         | N/A                         | N/A                         | 60-80                       | N/A                         | 80                          | 67-77                       | N/A                         |
| 5-S-JP-HD-A-1         | 101,989             | 70                            | 80         | 70                      | 70                                     | 70                                                      | 50-90                       | N/A                         | N/A                         | N/A                         | 60-80                       | N/A                         | 80                          | 67-77                       | N/A                         |
| 6-S-JP-HD-A-2         | 62,570              | 70                            | 80         | 70                      | 70                                     | 70                                                      | 50-90                       | N/A                         | N/A                         | N/A                         | 60-80                       | N/A                         | 80                          | 67-77                       | N/A                         |
| 7-S-JP-L&M            | 17,962              | 70                            | 80         | 70                      | 70                                     | 70                                                      | N/A                         |
| 8-SH-JP-A-A           | 41,834              | 80                            | 90         | 70                      | 70                                     | 70                                                      | 50-90                       | N/A                         | N/A                         | N/A                         | 60-80                       | N/A                         | 80                          | 67-77                       | N/A                         |
| 9-SH-WS-A-A           | 28,780              | 90                            | 100        | 50                      | 70                                     | 70                                                      | 70-110                      | N/A                         | N/A                         | 90                          | 70-80                       | N/A                         | 80                          | 70-80                       | N/A                         |
| 10-HS-WS-A-A          | 46,271              | 80                            | 90         | 60                      | 70                                     | 60                                                      | 50-90                       | 40-60                       | 60                          | N/A                         | N/A                         | 45-60                       | 60                          | 65-77                       | 50-65                       |
| 11-HS-JP-A-A          | 39,573              | 80                            | 90         | 50                      | 70                                     | 60                                                      | 50-90                       | 40-60                       | 60                          | N/A                         | N/A                         | 45-60                       | 60                          | 65-77                       | 50-65                       |
| 12-H-A-LD-A-1         | 17,845              | 70                            | 80         | 70                      | 70                                     | 60                                                      | 50-90                       | 40-60                       | 60                          | 60                          | N/A                         | 45-60                       | 60                          | 65-77                       | 50-65                       |
| 13-H-A-LD-A-2         | 30,323              | 70                            | 80         | 70                      | 70                                     | 60                                                      | 50-90                       | 40-60                       | 60                          | 60                          | N/A                         | 45-60                       | 60                          | 65-77                       | 50-65                       |
| 14-H-A-HD-A-1         | 63,166              | 70                            | 80         | 70                      | 70                                     | 60                                                      | 50-90                       | 40-60                       | 60                          | 60                          | N/A                         | 45-60                       | 60                          | 65-77                       | 50-65                       |
| 15-H-A-HD-A-2         | 129,451             | 70                            | 80         | 60                      | 70                                     | 60                                                      | 50-90                       | 40-60                       | 60                          | 60                          | N/A                         | 45-60                       | 60                          | 65-77                       | 50-65                       |
| 16-H(S)-A-LD-A        | 31,872              | 70                            | 80         | 50                      | 70                                     | 60                                                      | 50-90                       | 40-60                       | 60                          | 60                          | N/A                         | 45-60                       | 60                          | 65-77                       | 50-65                       |
| 17-H(S)-A-HD-A        | 50,199              | 70                            | 80         | 60                      | 70                                     | 60                                                      | 50-90                       | 40-60                       | 60                          | 60                          | N/A                         | 45-60                       | 60                          | 65-77                       | 50-65                       |



#### References:

- 1. Harvey, B.D., Leduc, A., Gauthier, S., Bergeron, Y., 2002. Stand-landscape integration in natural disturbance-based management of southern boreal forest. Forest Ecology and Management 155, 369-385.
- 2. Spence, J.R., Langor, D. W., Niemelä, J., Cárcamo, H.A., Currie, C.R., 1996. Northern forestry and carabids: the case for concern about old-growth species. Ann. Zool. Fennici 33, 173-184.
- 3. Pothier, D., Raulier, F., Riopel, M., 2004. Ageing and decline of trembling aspen stands in Quebec. Can. J. For. Res. 34, 1251-1258.
- 4. Comeau, P.G., Kabzems, R., McClarnon, J., Heineman, J.L., 2005. Implications of selected approaches for regenerating and managing western boreal mixedwoods. Forestry Chronicle 81 (4), 559-574.
- 5. Burns, R. M., Honkala, B.H., 1990. Silvics of North America. U.S. Department of Agriculture, Forest Service, Washington, DC. Volume 1. Retrieved online at: http://www.na.fs.fed.us/pubs/silvics\_manual/table\_of\_contents.shtm on August 3, 2006.
- 6. State of Wisconsin Department on Natural Resources, 2006. Silviculture and Forest Aesthetics Handbook. State of Wisconsin Department of Natural Resources, Madison, Wisconsin. Retrieved at http://dnr.wi.gov/org/land/forestry/publications/Handbooks/24315/ on August 3, 2006.
- 7. Liu, F., Downing, D., Foley, G., 2005. Stand succession study and its applications to forest management in Saskatchewan boreal forests: pilot project results. Final report. Timberline Forest Inventory Consultants, Edmonton, AB.
- 8. Pearson Timberline Forestry Consultants, 1994. Forest Growth and Yield Information and Knowledge. The Prince Albert Model Forest Association. Prince Albert, SK. pp.51.
- 9. Plonski, W.L. 1981. Normal yield tables (metric) for major forest species of Ontario. Forest Resources Group, Ontario Ministry of Natural Resources. Toronto.



## **APPENDIX B: DEVELOPMENT TYPE TRANSITIONS**

| SILVICULTURE GROUND RULES                 |                                                                   |                               |                              |                                               |  |  |  |  |
|-------------------------------------------|-------------------------------------------------------------------|-------------------------------|------------------------------|-----------------------------------------------|--|--|--|--|
| Saskatchewan<br>Provincial Forest<br>Type | Mistik Forest<br>Development Type<br>and Yield Curve <sup>1</sup> | Current Landbase<br>Area (ha) | Minimum Harvest<br>Age (yrs) | Transition<br>Assumptions                     |  |  |  |  |
| WSF<br>(SGR 1)                            | #1<br>(S-White spruce)                                            | 23,016                        | 80                           | #1 = 100%                                     |  |  |  |  |
| BS<br>(SGR 2)                             | #2<br>(S-Black spruce)                                            | 34,594                        | 100                          | #1 = 10%<br>#2 = 90%                          |  |  |  |  |
| JP<br>(SGR 3)                             | #3<br>(S-Jack pine)<br>Low Density<br>Low Productivity            | 94,548                        | 80                           | #3 = 35%<br>#5 = 55%<br>#8 = 10%              |  |  |  |  |
|                                           | #4<br>(S-Jack pine)<br>Low Density<br>High Productivity           | 29,871                        | 80                           | #4 = 35%<br>#6 = 55%<br>#8 = 10%              |  |  |  |  |
|                                           | #5<br>(S-Jack pine)<br>High Density<br>Low Productivity           | 101,108                       | 80                           | #5 = 90%<br>#8 = 10%                          |  |  |  |  |
|                                           | #6<br>(S-Jack pine)<br>High Density<br>High Productivity          | 57,705                        | 80                           | #6 = 90%<br>#8 = 10%                          |  |  |  |  |
|                                           | #7<br>(S-Jack pine)<br>L&M Jack pine                              | 17,962                        | 80                           | #7 = 100%                                     |  |  |  |  |
| PMW<br>(SGR 4)                            | #8<br>(SH - Jack pine<br>mixedwood)                               | 54,045                        | 100                          | #8 = 65%<br>#9 = 10%<br>#11 = 20%<br>#17 = 5% |  |  |  |  |


| SILVICULTURE GROUND RULES                 |                                                                   |                               |                              |                                                             |  |  |  |  |  |  |  |
|-------------------------------------------|-------------------------------------------------------------------|-------------------------------|------------------------------|-------------------------------------------------------------|--|--|--|--|--|--|--|
| Saskatchewan<br>Provincial Forest<br>Type | Mistik Forest<br>Development Type<br>and Yield Curve <sup>1</sup> | Current Landbase<br>Area (ha) | Minimum Harvest<br>Age (yrs) | Transition<br>Assumptions                                   |  |  |  |  |  |  |  |
| SMW<br>(SGR 5)                            | #9<br>(SH - Spruce<br>mixedwood)                                  | 51,773                        | 120                          | #1 = 10%<br>#9 = 70%<br>#10 = 20%                           |  |  |  |  |  |  |  |
| HSM<br>(SGR 6)                            | #10<br>(HS - Hardwood w/<br>spruce)                               | 54,377                        | 100                          | #9 = 40%<br>#10 = 60%                                       |  |  |  |  |  |  |  |
| HPM<br>(SGR 7)                            | #11<br>(HS - Hardwood w/<br>jack pine)                            | 42,185                        | 100                          | #8 = 20%<br>#9 = 20%<br>#10 = 20%<br>#11 = 30%<br>#17 = 10% |  |  |  |  |  |  |  |
|                                           | #12<br>(H – Hardwood)<br>Low Density<br>Low Productivity          | 17,195                        | 80                           | #9 = 15%<br>#10 = 15%<br>#12 = 5%<br>#14 = 65%              |  |  |  |  |  |  |  |
| ТАВ                                       | #13<br>(H – Hardwood)<br>Low Density<br>High Productivity         | 28,607                        | 80                           | #9 = 15%<br>#10 = 15%<br>#13 = 5%<br>#15 = 65%              |  |  |  |  |  |  |  |
| (SGR 8)                                   | #14<br>(H – Hardwood)<br>High Density<br>Low Productivity         | 64,239                        | 80                           | #9 = 15%<br>#10 = 15%<br>#12 = 5%<br>#14 = 65%              |  |  |  |  |  |  |  |
|                                           | #15<br>(H – Hardwood)<br>High Density<br>High Productivity        | 128,017                       | 80                           | #9 = 5%<br>#10 = 5%<br>#15 = 90%                            |  |  |  |  |  |  |  |



| SILVICULTURE GROUND RULES                 |                                                                             |                               |                              |                                    |  |  |  |  |  |  |  |
|-------------------------------------------|-----------------------------------------------------------------------------|-------------------------------|------------------------------|------------------------------------|--|--|--|--|--|--|--|
| Saskatchewan<br>Provincial Forest<br>Type | Mistik Forest<br>Development Type<br>and Yield Curve <sup>1</sup>           | Current Landbase<br>Area (ha) | Minimum Harvest<br>Age (yrs) | Transition<br>Assumptions          |  |  |  |  |  |  |  |
|                                           | #16<br>(H – Hardwood)<br>Significant Softwood<br>Incidental<br>Low Density  | 31,104                        | 80                           | #9 = 35%<br>#10 = 35%<br>#17 = 30% |  |  |  |  |  |  |  |
|                                           | #17<br>(H – Hardwood)<br>Significant Softwood<br>Incidental<br>High Density | 48,164                        | 80                           | #9 = 25%<br>#10 = 25%<br>#17 = 50% |  |  |  |  |  |  |  |



# APPENDIX C: SERAL STAGE MAINTENANCE STRATEGY

This appendix describes the strategy, developed in consultation with the FMP planning team, to address the maintenance of late seral stage on the Mistik FMA area.

# STRATEGY DETAILS

Four main items form the basis of this strategy:

#### 1. The defining features of a late seral stage stand.

Stand structure is the key indicator that identifies when a stand has progressed into a late seral stage. Late seral stage structure includes both vertical and horizontal characteristics in the stand. Some of the defining structural features include multi-layered canopies, large snags and coarse woody debris, gaps in the canopy and anti-gaps (areas of extreme density), large living trees and thickets of understorey vegetation. Although stand age is an indicator of late seral stage, it functions primarily as a proxy measure of the onset of late seral stage characteristics.

Late Seral Stage is defined in the Mistik FMP using the following age indicators:

- 90 Years Hardwood
- 90 Years Mixedwood
- 100 Years Softwood

#### 2. The defining features of high quality late seral stage.

Key characteristics associated with quality include (ranked in order of priority):

- Size of the stand (larger provides more interior)
- Stand complexity
- Stand height
- Stands in the caribou range, high conservation value forest areas, and intact forest area
- Local knowledge designated

Each of the listed quality indicators have "quality points" attached to them. The "quality points" of all the quality indicators are added up and the stands with the highest score are selected for retention. Example:

- If stand area is greater than 4 ha and less than 64 score = 1
- If stand area is greater than 64 ha and less than 100 score = 3
- If stand area is greater than 100 ha and less than 300 score = 5

#### 3. The portions of the landbase to be included in the strategy.

Late seral stage maintenance is a landscape feature that includes all portions of the forested landbase. As was identified by the FMP planning team, the strategy developed for the wood supply analysis includes the entire forested landbase and has a target for retention for both

productive and eligible non-operable forest types (Figure C.1 Identification of eligible stands for late seral retention



## FIGURE C.1 IDENTIFICATION OF ELIGIBLE STANDS FOR LATE SERAL RETENTION

#### 4. What amount of late seral stage should be maintained?

As per David Andison's seral stage analysis<sup>18</sup>, the targeted retention of the productive forest areas is as follows:

- 5% Jack Pine Softwood = 16,565 ha (of which 1,657 ha is very old),
- 5% Black Spruce Softwood = 4,284 ha (of which 428 ha is very old),
- 9% White Spruce Softwood = 2,713 ha (of which 271 ha is very old),
- 10% Softwood Dominated Mixedwood = 11,474 ha (of which 1,147 ha is very old),
- 10% Hardwood Dominated Mixedwood = 10,894 ha (of which 1,089 ha is very old),
- 14% Deciduous Types = 48,505 ha (of which 4,850 ha is very old)
- Total targeted late seral stage forest retention in productive forest types is ~94,000 ha.
- ~620,000 ha of late seral stage forest will be produced by the Non-Productive Types.

Combined this accounts at least 714,000 ha of forested land that will be managed for late seral stage.

<sup>&</sup>lt;sup>18</sup> Andison, D.W. 2006. Natural levels of forest seral-stage variability on the Mistik Management Ltd. FMA Area in Saskatchewan. Bandaloop Landscape-Ecosystem Services. Vancouver, BC.





# **APPENDIX D: PIECE SIZE ANALYSIS**

This appendix displays the 20-year harvest sequence piece size analysis for the Selected Management Strategy by development type.

## FIGURE D.1 PIECE SIZE DEVELOPMENT TYPE 1: S-WS-A-A



#### TABLE D.1: PIECE SIZE DEVELOPMENT TYPE 1: S-WS-A-A

| Development Type<br>Coefficients |                                                             |           | а        |                | b                      |                 | C       | d                                 | t        |  |
|----------------------------------|-------------------------------------------------------------|-----------|----------|----------------|------------------------|-----------------|---------|-----------------------------------|----------|--|
| Softwood                         |                                                             | 1.0909368 |          | E+01 1.193618E |                        | 02              |         |                                   |          |  |
| Hardwood                         |                                                             |           | 1.293250 | E+01           | 1.154863E-0            | 02              |         |                                   |          |  |
| Age<br>Class                     | Age Observed Average Piece<br>Class (trees/m <sup>3</sup> ) |           |          |                | Predicted P<br>(trees) | Piece S<br>/m³) | Size    | Predicted Piece Size<br>(m³/tree) |          |  |
| (yrs)                            | Softwood                                                    | Har       | dwood    | S              | oftwood                | Hard            | dwood   | Softwood                          | Hardwood |  |
| 10                               |                                                             |           |          |                | 9.6819                 |                 | 11.5220 | 0.1033                            | 0.0868   |  |
| 20                               |                                                             |           |          |                | 8.5926                 |                 | 10.2653 | 0.1164                            | 0.0974   |  |
| 30                               |                                                             |           |          |                | 7.6258                 |                 | 9.1457  | 0.1311                            | 0.1093   |  |
| 40                               | 6.5028                                                      |           | 7.6113   |                | 6.7678                 |                 | 8.1482  | 0.1478                            | 0.1227   |  |
| 50                               | 6.6492                                                      |           | 7.2667   |                | 6.0063                 |                 | 7.2595  | 0.1665                            | 0.1378   |  |
| 60                               | 4.9088                                                      |           | 6.6039   |                | 5.3305                 |                 | 6.4677  | 0.1876                            | 0.1546   |  |
| 70                               | 4.9646                                                      |           | 6.1820   |                | 4.7308                 |                 | 5.7623  | 0.2114                            | 0.1735   |  |
| 80                               | 3.0565                                                      |           |          |                | 4.1985                 |                 | 5.1338  | 0.2382                            | 0.1948   |  |
| 90                               | 7.0451                                                      |           | 2.4225   |                | 3.7261                 |                 | 4.5739  | 0.2684                            | 0.2186   |  |
| 100                              | 3.4554                                                      |           | 4.4692   |                | 3.3069                 |                 | 4.0750  | 0.3024                            | 0.2454   |  |
| 110                              | 1.1858                                                      |           | 2.0357   |                | 2.9348                 |                 | 3.6306  | 0.3407                            | 0.2754   |  |
| 120                              | 2.3276                                                      |           | 1.1445   |                | 2.6046                 |                 | 3.2346  | 0.3839                            | 0.3092   |  |
| 130                              |                                                             |           |          |                | 2.3115                 |                 | 2.8818  | 0.4326                            | 0.3470   |  |
| 140                              |                                                             |           |          |                | 2.0515                 |                 | 2.5675  | 0.4875                            | 0.3895   |  |
| 150                              |                                                             |           |          |                | 1.8207                 |                 | 2.2875  | 0.5493                            | 0.4372   |  |
| 160                              |                                                             |           |          |                | 1.6158                 |                 | 2.0380  | 0.6189                            | 0.4907   |  |
| 170                              |                                                             |           |          |                | 1.4340                 |                 | 1.8157  | 0.6973                            | 0.5507   |  |
| 180                              |                                                             |           |          |                | 1.2727                 |                 | 1.6177  | 0.7858                            | 0.6182   |  |
| 190                              |                                                             |           |          |                | 1.1295                 |                 | 1.4412  | 0.8854                            | 0.6938   |  |
| 200                              |                                                             |           |          |                | 1.0024                 |                 | 1.2840  | 0.9976                            | 0.7788   |  |

## FIGURE D.2 PIECE SIZE DEVELOPMENT TYPE 2: S-BS-A-A

![](_page_114_Figure_3.jpeg)

#### TABLE D.2: PIECE SIZE DEVELOPMENT TYPE 2: S-BS-A-A

| Development Type<br>Coefficients                                |          |     | а        |                  | b                   |                          | с           | d                              | t                   |
|-----------------------------------------------------------------|----------|-----|----------|------------------|---------------------|--------------------------|-------------|--------------------------------|---------------------|
| Softwood                                                        | 8.923556 |     | 8.923556 | E+00 1.709487E-0 |                     |                          |             |                                |                     |
| Hardwood 1.459                                                  |          |     | 1.459727 | E+01             | 7.169398E           | -03                      |             |                                |                     |
| Age Observed Average Piece Siz<br>Class (trees/m <sup>3</sup> ) |          |     | ece Size |                  | Predicted<br>(trees | Piec<br>s/m <sup>3</sup> | e Size<br>) | Predicted<br>(m <sup>3</sup> / | Piece Size<br>tree) |
| (yrs)                                                           | Softwood | Har | dwood    | So               | oftwood             | H                        | ardwood     | Softwood                       | Hardwood            |
| 10                                                              |          |     |          |                  | 8.7723              |                          | 13.5874     | 0.1140                         | 0.0736              |
| 20                                                              |          |     |          |                  | 8.6236              |                          | 12.6473     | 0.1160                         | 0.0791              |
| 30                                                              |          |     |          |                  | 8.4775              |                          | 11.7723     | 0.1180                         | 0.0849              |
| 40                                                              |          |     |          |                  | 8.3338              |                          | 10.9579     | 0.1200                         | 0.0913              |
| 50                                                              |          |     |          |                  |                     | 1925 10.1                |             | 0.1221                         | 0.0980              |
| 60                                                              | 8.7011   | 6   | .1372    | 8.0536           |                     |                          | 9.4941      | 0.1242                         | 0.1053              |
| 70                                                              | 7.1516   | 8   | .0128    | 7.9171           |                     |                          | 8.8373      | 0.1263                         | 0.1132              |
| 80                                                              | 9.5124   |     |          | 7.7830           |                     |                          | 8.2259      | 0.1285                         | 0.1216              |
| 90                                                              | 7.0148   | 15  | 5.5280   |                  | 7.6510              |                          | 7.6568      | 0.1307                         | 0.1306              |
| 100                                                             |          |     |          |                  | 7.5214              |                          | 7.1270      | 0.1330                         | 0.1403              |
| 110                                                             | 7.2600   | 7.  | .6040    |                  | .3939               |                          | 6.6340      | 0.1352                         | 0.1507              |
| 120                                                             | 9.7865   |     |          |                  | 7.2685              |                          | 6.1750      | 0.1376                         | 0.1619              |
| 130                                                             | 6.4390   | 2   | .7917    |                  | 7.1453              |                          | 5.7478      | 0.1400                         | 0.1740              |
| 140                                                             |          |     |          |                  | 7.0242              |                          | 5.3501      | 0.1424                         | 0.1869              |
| 150                                                             |          |     |          |                  | 6.9052              |                          | 4.9800      | 0.1448                         | 0.2008              |
| 160                                                             |          |     |          |                  | 6.7881              |                          | 4.6354      | 0.1473                         | 0.2157              |
| 170                                                             |          |     |          |                  | 6.6731              |                          | 4.3147      | 0.1499                         | 0.2318              |
| 180                                                             |          |     |          |                  | 6.5600              |                          | 4.0162      | 0.1524                         | 0.2490              |
| 190                                                             |          |     |          | 6.4488           |                     | 4488 3.7384              |             | 0.1551                         | 0.2675              |
| 200                                                             |          |     |          |                  | 6.3395              |                          | 3.4797      | 0.1577                         | 0.2874              |

![](_page_115_Picture_1.jpeg)

## FIGURE D.3 PIECE SIZE DEVELOPMENT TYPE 3: S-JP-LD-A-1

![](_page_115_Figure_3.jpeg)

#### TABLE D.3: PIECE SIZE DEVELOPMENT TYPE 3: S-JP-LD-A-1

| Development Type<br>Coefficients |                                              |           | а        |                 | b                     |              | с           | d                                 | t        |  |
|----------------------------------|----------------------------------------------|-----------|----------|-----------------|-----------------------|--------------|-------------|-----------------------------------|----------|--|
| Softwood                         |                                              | 1.906942E |          | E+01 1.064310E- |                       | 02           |             |                                   |          |  |
| Hardwood 1.                      |                                              |           | 1.418362 | E+01            | 6.119314E-            | 03           |             |                                   |          |  |
| Age<br>Class                     | AgeObserved Average Piece SizClass(trees/m³) |           |          |                 | Predicted F<br>(trees | Piec<br>/m³) | e Size<br>) | Predicted Piece Size<br>(m³/tree) |          |  |
| (yrs)                            | Softwood                                     | Har       | dwood    | S               | oftwood               | H            | ardwood     | Softwood                          | Hardwood |  |
| 10                               |                                              |           |          |                 | 17.1441               |              | 13.3417     | 0.0583                            | 0.0750   |  |
| 20                               | 12.2249                                      |           |          |                 | 15.4132               |              | 12.5498     | 0.0649                            | 0.0797   |  |
| 30                               | 15.3139                                      |           |          |                 | 13.8570               |              | 11.8048     | 0.0722                            | 0.0847   |  |
| 40                               | 14.2814                                      |           |          |                 | 12.4580               |              | 11.1041     | 0.0803                            | 0.0901   |  |
| 50                               | 11.0365                                      | 12        | .8455    |                 | 11.2002               |              | 10.4450     | 0.0893                            | 0.0957   |  |
| 60                               | 7.8333                                       | 4.        | 4.6823   |                 | 10.0694               | 394 9.8250   |             | 0.0993                            | 0.1018   |  |
| 70                               | 11.0071                                      | 13        | 3.7063   | 9.0528          |                       |              | 9.2418      | 0.1105                            | 0.1082   |  |
| 80                               | 8.3069                                       | 7.        | .2636    | 8.1388          |                       |              | 8.6932      | 0.1229                            | 0.1150   |  |
| 90                               | 5.5285                                       | 14        | .1044    | 7.3171          |                       |              | 8.1772      | 0.1367                            | 0.1223   |  |
| 100                              | 6.0929                                       | 8.        | .0794    |                 | 6.5783                |              | 7.6918      | 0.1520                            | 0.1300   |  |
| 110                              | 8.8021                                       |           |          |                 | 5.9141                |              | 7.2352      | 0.1691                            | 0.1382   |  |
| 120                              | 5.5383                                       | 3.        | 1556     |                 | 5.3170                |              | 6.8058      | 0.1881                            | 0.1469   |  |
| 130                              |                                              |           |          |                 | 4.7802                |              | 6.4018      | 0.2092                            | 0.1562   |  |
| 140                              |                                              |           |          |                 | 4.2976                |              | 6.0218      | 0.2327                            | 0.1661   |  |
| 150                              |                                              |           |          |                 | 3.8637                |              | 5.6643      | 0.2588                            | 0.1765   |  |
| 160                              |                                              |           |          |                 | 3.4736                |              | 5.3281      | 0.2879                            | 0.1877   |  |
| 170                              |                                              |           |          |                 | 3.1229                |              | 5.0118      | 0.3202                            | 0.1995   |  |
| 180                              |                                              |           |          |                 | 2.8076                |              | 4.7143      | 0.3562                            | 0.2121   |  |
| 190                              |                                              |           |          |                 | 2.5241                | 2.5241       |             | 0.3962                            | 0.2255   |  |
| 200                              |                                              |           |          |                 | 2.2693                |              | 4.1713      | 0.4407                            | 0.2397   |  |

![](_page_116_Picture_1.jpeg)

## FIGURE D.4 PIECE SIZE DEVELOPMENT TYPE 4: S-JP-LD-A-2

![](_page_116_Figure_3.jpeg)

## TABLE D.4: PIECE SIZE DEVELOPMENT TYPE 4: S-JP-LD-A-2

| Development Type<br>Coefficients |                                            |      | а         |                    | b                     |                          | с           | d                                 | t        |  |
|----------------------------------|--------------------------------------------|------|-----------|--------------------|-----------------------|--------------------------|-------------|-----------------------------------|----------|--|
| Softwood                         | twood 1.336282                             |      | 1.336282E | 282E+01 7.865057E- |                       | ·03                      |             |                                   |          |  |
| Hardwood 3.4                     |                                            |      | 3.463192E | E+01               | 1.824683E-            |                          |             |                                   |          |  |
| Age<br>Class                     | AgeObserved Average Piece SClass(trees/m³) |      |           |                    | Predicted I<br>(trees | Piec<br>s/m <sup>3</sup> | e Size<br>) | Predicted Piece Size<br>(m³/tree) |          |  |
| (yrs)                            | Softwood                                   | Hard | dwood     | S                  | oftwood               | H                        | ardwood     | Softwood                          | Hardwood |  |
| 10                               |                                            |      |           |                    | 12.3521               |                          | 28.8557     | 0.0810                            | 0.0347   |  |
| 20                               |                                            |      |           |                    | 11.4178               |                          | 24.0429     | 0.0876                            | 0.0416   |  |
| 30                               |                                            | 12   | .0773     |                    | 10.5542               |                          | 20.0328     | 0.0947                            | 0.0499   |  |
| 40                               | 8.3902                                     | 18   | .2944     |                    | 9.7559                |                          | 16.6915     | 0.1025                            | 0.0599   |  |
| 50                               | 8.7856                                     | 16   | .5781     |                    | 9.0180                |                          | 13.9076     | 0.1109                            | 0.0719   |  |
| 60                               | 9.4902                                     | 11.  | 11.3977   |                    | 8.3359                |                          | 11.5880     | 0.1200                            | 0.0863   |  |
| 70                               | 8.2705                                     | 7.   | 8291      | 7.7054             |                       |                          | 9.6552      | 0.1298                            | 0.1036   |  |
| 80                               | 4.5047                                     | 10   | .8197     | 7.1226             |                       |                          | 8.0448      | 0.1404                            | 0.1243   |  |
| 90                               |                                            |      |           | 6.5839             |                       |                          | 6.7030      | 0.1519                            | 0.1492   |  |
| 100                              |                                            |      |           | 6.0859             |                       | o.0859 5.58              |             | 0.1643                            | 0.1790   |  |
| 110                              |                                            |      |           |                    | 5.6256                |                          | 4.6535      | 0.1778                            | 0.2149   |  |
| 120                              |                                            |      |           |                    | 5.2001                |                          | 3.8774      | 0.1923                            | 0.2579   |  |
| 130                              |                                            |      |           |                    | 4.8067                |                          | 3.2307      | 0.2080                            | 0.3095   |  |
| 140                              |                                            |      |           |                    | 4.4432                |                          | 2.6918      | 0.2251                            | 0.3715   |  |
| 150                              |                                            |      |           |                    | 4.1071                |                          | 2.2429      | 0.2435                            | 0.4459   |  |
| 160                              |                                            |      |           |                    | 3.7965                |                          | 1.8688      | 0.2634                            | 0.5351   |  |
| 170                              |                                            |      |           |                    | 3.5093                |                          | 1.5571      | 0.2850                            | 0.6422   |  |
| 180                              |                                            |      |           |                    | 3.2439                |                          | 1.2974      | 0.3083                            | 0.7708   |  |
| 190                              |                                            |      |           |                    | 2.9985                |                          | 1.0810      | 0.3335                            | 0.9251   |  |
| 200                              |                                            |      |           |                    | 2.7717                |                          | 0.9007      | 0.3608                            | 1.1103   |  |

![](_page_117_Picture_1.jpeg)

## FIGURE D.5 PIECE SIZE DEVELOPMENT TYPE 5: S-JP-HD-A-1

![](_page_117_Figure_3.jpeg)

#### TABLE D.5: PIECE SIZE DEVELOPMENT TYPE 5: S-JP-HD-A-1

| Development Type<br>Coefficients                            |              |     | а        |                      | b                     | с                        |             | d              |                           | t                  |
|-------------------------------------------------------------|--------------|-----|----------|----------------------|-----------------------|--------------------------|-------------|----------------|---------------------------|--------------------|
| Softwood                                                    | bod 1.509221 |     | 1.509221 | E+01 9.226411E       |                       | 03                       |             |                |                           |                    |
| Hardwood                                                    |              |     | 2.402961 | E+01                 | 8.900305E-            | 03                       |             |                |                           |                    |
| Age Observed Average Piece<br>Class (trees/m <sup>3</sup> ) |              |     | ece Size |                      | Predicted F<br>(trees | Piec<br>s/m <sup>3</sup> | e Size<br>) | Predicte<br>(n | d F<br>1 <sup>3</sup> /tr | Piece Size<br>ree) |
| (yrs)                                                       | Softwood     | Har | dwood    | S                    | oftwood               | H                        | ardwood     | Softwood       |                           | Hardwood           |
| 10                                                          |              |     |          |                      | 13.7620               |                          | 21.9833     | 0.0727         |                           | 0.0455             |
| 20                                                          |              |     |          |                      | 12.5491               |                          | 20.1113     | 0.0797         |                           | 0.0497             |
| 30                                                          | 12.4844      |     |          |                      | 11.4431               |                          | 18.3987     | 0.0874         |                           | 0.0544             |
| 40                                                          | 11.6866      |     |          | ,                    | 10.4345               |                          | 16.8319     | 0.0958         |                           | 0.0594             |
| 50                                                          | 11.1512      | 17  | .5292    |                      | 9.5149                |                          | 15.3985     | 0.1051         |                           | 0.0649             |
| 60                                                          | 8.0248       | 12  | 12.9316  |                      | 8.6763                |                          | 14.0872     | 0.1153         |                           | 0.0710             |
| 70                                                          | 7.8524       | 13  | 3.0710   | 7.9116               |                       |                          | 12.8876     | 0.1264         |                           | 0.0776             |
| 80                                                          | 7.1013       | 8   | .4822    |                      | 7.2143                |                          | 11.7901     | 0.1386         |                           | 0.0848             |
| 90                                                          | 6.2334       | 20  | ).7037   |                      | 6.5785                |                          | 10.7861     | 0.1520         |                           | 0.0927             |
| 100                                                         | 7.5936       | 9   | .0183    |                      | 5.9987                |                          | 9.8676      | 0.1667         |                           | 0.1013             |
| 110                                                         | 8.2481       |     |          |                      | 5.4700                |                          | 9.0273      | 0.1828         |                           | 0.1108             |
| 120                                                         |              |     |          |                      | 4.9879                |                          | 8.2586      | 0.2005         |                           | 0.1211             |
| 130                                                         |              |     |          |                      | 4.5483                |                          | 7.5553      | 0.2199         |                           | 0.1324             |
| 140                                                         |              |     |          |                      | 4.1474                |                          | 6.9119      | 0.2411         |                           | 0.1447             |
| 150                                                         |              |     |          |                      | 3.7819                |                          | 6.3233      | 0.2644         |                           | 0.1581             |
| 160                                                         |              |     |          |                      | 3.4485                |                          | 5.7848      | 0.2900         |                           | 0.1729             |
| 170                                                         |              |     |          |                      | 3.1446                |                          | 5.2922      | 0.3180         |                           | 0.1890             |
| 180                                                         |              |     |          | 2.8675 4.8415 0.3487 |                       | 675 4.8415               |             |                | 0.2065                    |                    |
| 190                                                         |              |     |          | 2.6147               |                       |                          | 4.4292      | 0.3824         |                           | 0.2258             |
| 200                                                         |              |     |          |                      | 2.3843                |                          | 4.0521      | 0.4194         |                           | 0.2468             |

![](_page_118_Picture_1.jpeg)

## FIGURE D.6 PIECE SIZE DEVELOPMENT TYPE 6: S-JP-HD-A-2

![](_page_118_Figure_3.jpeg)

#### TABLE D.6: PIECE SIZE DEVELOPMENT TYPE 6: S-JP-HD-A-2

| Development Type<br>Coefficients |                            |     | а        |        | b           |              | с               | d                    | t        |        |        |
|----------------------------------|----------------------------|-----|----------|--------|-------------|--------------|-----------------|----------------------|----------|--------|--------|
| Softwood                         |                            |     | 1.561568 |        | 1.466984E-  | 02           |                 |                      |          |        |        |
| Hardwood                         | Hardwood 1.24              |     |          | E+01   | 4.464203E-  | 03           |                 |                      |          |        |        |
| Age                              | Age Observed Average Piece |     |          |        | Predicted F | Piec         | e Size          | Predicted Piece Size |          |        |        |
| Class                            | (trees                     |     |          | (trees | s/m³        | )            | (m <sup>2</sup> | /tree)               |          |        |        |
| (yrs)                            | Softwood                   | Har | dwood    | S      | oftwood     | H            | ardwood         | Softwood             | Hardwood |        |        |
| 10                               |                            |     |          |        | 13.4850     |              | 11.9081         | 0.0742               | 0.0840   |        |        |
| 20                               | 10.4767                    |     |          |        | 11.6450     |              | 11.3882         | 0.0859               | 0.0878   |        |        |
| 30                               | 8.2869                     |     |          |        | 10.0561     |              | 10.8910         | 0.0994               | 0.0918   |        |        |
| 40                               | 8.0260                     | 19  | .0597    |        | 8.6840      |              | 10.4155         | 0.1152               | 0.0960   |        |        |
| 50                               | 8.1892                     | 10  | .3106    |        | 7.4991      |              | 9.9607          | 0.1333               | 0.1004   |        |        |
| 60                               | 6.6680                     | 2   | 1915     |        | 6.4759      |              | 9.5259          | 0.1544               | 0.1050   |        |        |
| 70                               | 5.7169                     | 9   | .0824    | 5.5923 |             |              | 9.1100          | 0.1788               | 0.1098   |        |        |
| 80                               | 4.0230                     | 8   | .6893    |        | 4.8292      |              | 8.7122          | 0.2071               | 0.1148   |        |        |
| 90                               | 2.2389                     | 20  | .0401    |        | 4.1703      |              | 8.3318          | 0.2398               | 0.1200   |        |        |
| 100                              |                            |     |          |        | 3.6013      |              | 7.9681          | 0.2777               | 0.1255   |        |        |
| 110                              |                            |     |          |        | 3.1099      | .1099 7.6202 |                 | 0.3216               | 0.1312   |        |        |
| 120                              |                            |     |          |        | 2.6856      |              | 7.2875          | 0.3724               | 0.1372   |        |        |
| 130                              |                            |     |          |        | 2.3191      |              | 6.9693          | 0.4312               | 0.1435   |        |        |
| 140                              |                            |     |          |        | 2.0027      |              | 6.6650          | 0.4993               | 0.1500   |        |        |
| 150                              |                            |     |          |        | 1.7294      |              | 6.3740          | 0.5782               | 0.1569   |        |        |
| 160                              |                            |     |          |        | 1.4935      |              | 6.0957          | 0.6696               | 0.1640   |        |        |
| 170                              |                            |     |          |        | 1.2897      |              | 5.8296          | 0.7754               | 0.1715   |        |        |
| 180                              |                            |     |          |        | 1.1137      |              | 5.5751          | 0.8979               | 0.1794   |        |        |
| 190                              |                            |     |          |        | 0.9618      |              | 0.9618 5.3317   |                      | 5.3317   | 1.0398 | 0.1876 |
| 200                              |                            |     |          |        | 0.8305      |              | 5.0989          | 1.2041               | 0.1961   |        |        |

![](_page_119_Picture_1.jpeg)

#### FIGURE D.7 PIECE SIZE DEVELOPMENT TYPE 7: S-JP-L&M

![](_page_119_Figure_3.jpeg)

#### TABLE D.7: PIECE SIZE DEVELOPMENT TYPE 7: S-JP-L&M

| Development Type<br>Coefficients |                         |     | а        |                | b           |              | с       | d                    | t        |  |
|----------------------------------|-------------------------|-----|----------|----------------|-------------|--------------|---------|----------------------|----------|--|
| Softwood                         |                         |     | 2.341631 | E+01 2.035329E |             | 02           |         |                      |          |  |
| Hardwood 1.236                   |                         |     | 1.236110 | E+01           | 6.680309E-  | 03           |         |                      |          |  |
| Age Observed Average Piece Size  |                         |     | ece Size |                | Predicted F | Piec         | e Size  | Predicted Piece Size |          |  |
| Class                            | (trees/m <sup>3</sup> ) |     |          |                | (trees      | s/m³         | )       | (m²/                 | tree)    |  |
| (yrs)                            | Softwood                | Har | dwood    | Sc             | oftwood     | H            | ardwood | Softwood             | Hardwood |  |
| 10                               |                         |     |          | 1              | 19.1040     |              | 11.5623 | 0.0523               | 0.0865   |  |
| 20                               |                         |     |          | 1              | 15.5859     |              | 10.8152 | 0.0642               | 0.0925   |  |
| 30                               |                         |     |          | 1              | 12.7157     |              | 10.1163 | 0.0786               | 0.0989   |  |
| 40                               | 11.2080                 |     |          | 1              | 10.3740     |              | 9.4626  | 0.0964               | 0.1057   |  |
| 50                               | 9.4882                  |     |          |                | 8.4635      |              | 8.8511  | 0.1182               | 0.1130   |  |
| 60                               | 6.5448                  | 7.  | .5468    |                | 6.9049      |              | 8.2791  | 0.1448               | 0.1208   |  |
| 70                               | 4.7286                  | 8.  | .0717    |                | 5.6333      |              | 7.7441  | 0.1775               | 0.1291   |  |
| 80                               | 4.4938                  | 7.  | .3829    |                | 4.5959      |              | 7.2437  | 0.2176               | 0.1381   |  |
| 90                               | 4.8639                  | 6.  | .3553    |                | 3.7496      |              | 6.7756  | 0.2667               | 0.1476   |  |
| 100                              | 4.3657                  | 6.  | .8266    |                | 3.0590      | 6.3378       |         | 0.3269               | 0.1578   |  |
| 110                              |                         |     |          |                | 2.4957      | 5.9282       |         | 0.4007               | 0.1687   |  |
| 120                              |                         |     |          |                | 2.0361      |              | 5.5451  | 0.4911               | 0.1803   |  |
| 130                              |                         |     |          |                | 1.6611      |              | 5.1868  | 0.6020               | 0.1928   |  |
| 140                              |                         |     |          |                | 1.3552      |              | 4.8516  | 0.7379               | 0.2061   |  |
| 150                              |                         |     |          |                | 1.1057      |              | 4.5381  | 0.9044               | 0.2204   |  |
| 160                              |                         |     |          |                | 0.9020      |              | 4.2448  | 1.1086               | 0.2356   |  |
| 170                              |                         |     |          |                | 0.7359      |              | 3.9705  | 1.3588               | 0.2519   |  |
| 180                              |                         |     |          | 0.6004         |             | 6004 3.714   |         | 1.6656               | 0.2693   |  |
| 190                              |                         |     |          | 0.4898         |             | .4898 3.4740 |         | 2.0415               | 0.2879   |  |
| 200                              |                         |     |          |                | 0.3996      |              | 3.2495  | 2.5023               | 0.3077   |  |

![](_page_120_Picture_1.jpeg)

## FIGURE D.8 PIECE SIZE DEVELOPMENT TYPE 8: SH-JP-A-A

![](_page_120_Figure_3.jpeg)

#### TABLE D.8: PIECE SIZE DEVELOPMENT TYPE 8: SH-JP-A-A

| Development Type<br>Coefficients |                                            |          | а        |        | b                     |              | с           | d                               | t                   |        |        |
|----------------------------------|--------------------------------------------|----------|----------|--------|-----------------------|--------------|-------------|---------------------------------|---------------------|--------|--------|
| Softwood                         |                                            | 1.247074 |          | E+01   | 1.350713E-            | -02          |             |                                 |                     |        |        |
| Hardwood 2.24                    |                                            |          | 2.247153 | E+01   | 1.500171E-            | -02          |             |                                 |                     |        |        |
| Age<br>Class                     | AgeObserved Average Piece SClass(trees/m³) |          |          |        | Predicted I<br>(trees | Piec<br>s/m³ | e Size<br>) | Predicted<br>(m <sup>3</sup> /t | Piece Size<br>tree) |        |        |
| (yrs)                            | Softwood                                   | Har      | dwood    | Sc     | oftwood               | H            | ardwood     | Softwood                        | Hardwood            |        |        |
| 10                               |                                            |          |          | 1      | 10.8951               |              | 19.3411     | 0.0918                          | 0.0517              |        |        |
| 20                               |                                            |          |          |        | 9.5186                |              | 16.6467     | 0.1051                          | 0.0601              |        |        |
| 30                               |                                            | 6.       | 2829     |        | 8.3159                |              | 14.3277     | 0.1203                          | 0.0698              |        |        |
| 40                               | 5.1462                                     | 15       | .9110    |        | 7.2652                |              | 12.3318     | 0.1376                          | 0.0811              |        |        |
| 50                               | 7.4564                                     | 13       | .8725    |        | 6.3473                |              | 10.6139     | 0.1575                          | 0.0942              |        |        |
| 60                               | 5.5651                                     | 11       | 11.2054  |        | 5.5453                |              | 9.1353      | 0.1803                          | 0.1095              |        |        |
| 70                               | 3.3718                                     | 7.       | 1759     | 4.8447 |                       |              | 7.8627      | 0.2064                          | 0.1272              |        |        |
| 80                               | 5.9423                                     | 5.       | 3061     | 4.2326 |                       |              | 6.7674      | 0.2363                          | 0.1478              |        |        |
| 90                               | 3.1535                                     | 1.       | 6558     | 3.6978 |                       |              | 5.8246      | 0.2704                          | 0.1717              |        |        |
| 100                              |                                            |          |          |        | 3.2306                |              | 5.0132      | 0.3095                          | 0.1995              |        |        |
| 110                              |                                            |          |          |        | 2.8224                |              | 4.3148      | 0.3543                          | 0.2318              |        |        |
| 120                              |                                            |          |          |        | 2.4658                |              | 3.7138      | 0.4055                          | 0.2693              |        |        |
| 130                              |                                            |          |          |        | 2.1543                |              | 3.1964      | 0.4642                          | 0.3129              |        |        |
| 140                              |                                            |          |          |        | 1.8821                |              | 2.7511      | 0.5313                          | 0.3635              |        |        |
| 150                              |                                            |          |          |        | 1.6443                |              | 2.3679      | 0.6082                          | 0.4223              |        |        |
| 160                              |                                            |          |          |        | 1.4366                |              | 2.0380      | 0.6961                          | 0.4907              |        |        |
| 170                              |                                            |          |          |        | 1.2550                |              | 1.7541      | 0.7968                          | 0.5701              |        |        |
| 180                              |                                            |          |          |        | 1.0965                |              | 1.5097      | 0.9120                          | 0.6624              |        |        |
| 190                              |                                            |          |          |        | 0.9579                |              | 0.9579      |                                 | 1.2994              | 1.0439 | 0.7696 |
| 200                              |                                            |          |          |        | 0.8369                |              | 1.1184      | 1.1949                          | 0.8941              |        |        |

#### FIGURE D.9 PIECE SIZE DEVELOPMENT TYPE 9: SH-WS-A-A

![](_page_121_Figure_3.jpeg)

#### TABLE D.9: PIECE SIZE DEVELOPMENT TYPE 9: SH-WS-A-A

| Development Type<br>Coefficients                          |          |     | а                         |              | b                   |                          | с            |   | d                                 | t                  |        |        |
|-----------------------------------------------------------|----------|-----|---------------------------|--------------|---------------------|--------------------------|--------------|---|-----------------------------------|--------------------|--------|--------|
| Softwood                                                  |          |     | 9.718785                  | 9.718785E+00 |                     | -02                      |              |   |                                   |                    |        |        |
| Hardwood                                                  |          |     | 2.642567E+01 2.448865E-02 |              |                     |                          |              |   |                                   |                    |        |        |
| Age Observed Average Pic<br>Class (trees/m <sup>3</sup> ) |          |     | ece Size                  |              | Predicted<br>(trees | Piec<br>s/m <sup>3</sup> | e Size<br>)  |   | Predicted F<br>(m <sup>3</sup> /t | Piece Size<br>ree) |        |        |
| (yrs)                                                     | Softwood | Har | dwood                     | Sc           | oftwood             | H                        | ardwood      | S | oftwood                           | Hardwood           |        |        |
| 10                                                        |          |     |                           |              | 8.6371              |                          | 20.6858      |   | 0.1158                            | 0.0483             |        |        |
| 20                                                        |          |     |                           |              | 7.6758              |                          | 16.1927      |   | 0.1303                            | 0.0618             |        |        |
| 30                                                        | 5.0804   | 9   | .0532                     |              | 6.8215              |                          | 12.6756      |   | 0.1466                            | 0.0789             |        |        |
| 40                                                        |          |     |                           |              | 6.0623              |                          | 9.9224       |   | 0.1650                            | 0.1008             |        |        |
| 50                                                        | 4.9414   | 10  | ).6199                    |              | 5.3876              |                          | 7.7672       |   | 0.1856                            | 0.1287             |        |        |
| 60                                                        | 5.0998   | 6   | .8232                     |              | 4.7879              |                          | 6.0801       |   | 0.2089                            | 0.1645             |        |        |
| 70                                                        | 5.0897   | 4   | .6336                     |              | 4.2551              |                          | 4.7594       |   | 0.2350                            | 0.2101             |        |        |
| 80                                                        | 2.7812   | 1   | .1973                     |              | 3.7815              |                          | 3.7257       |   | 0.2644                            | 0.2684             |        |        |
| 90                                                        | 4.0689   | 3   | .1830                     |              | 3.3606              |                          | 2.9164       |   | 0.2976                            | 0.3429             |        |        |
| 100                                                       | 1.4714   | 1   | .9999                     |              | 2.9866              |                          | 2.2830       |   | 0.3348                            | 0.4380             |        |        |
| 110                                                       |          |     |                           |              | 2.6542              | 542 1.7871               |              |   | 0.3768                            | 0.5596             |        |        |
| 120                                                       |          |     |                           |              | 2.3588              | 1.3989                   |              |   | 0.4239                            | 0.7148             |        |        |
| 130                                                       |          |     |                           |              | 2.0963              |                          | 1.0951       |   | 0.4770                            | 0.9132             |        |        |
| 140                                                       |          |     |                           |              | 1.8629              |                          | 0.8572       |   | 0.5368                            | 1.1666             |        |        |
| 150                                                       |          |     |                           |              | 1.6556              |                          | 0.6710       |   | 0.6040                            | 1.4903             |        |        |
| 160                                                       |          |     |                           |              | 1.4713              |                          | 0.5253       |   | 0.6797                            | 1.9038             |        |        |
| 170                                                       |          |     |                           |              | 1.3076              |                          | 0.4112       |   | 0.7648                            | 2.4320             |        |        |
| 180                                                       |          |     |                           |              | 1.1620              | 20 0.3                   |              |   | 0.8605                            | 3.1069             |        |        |
| 190                                                       |          |     |                           |              | 1.0327              |                          | .0327 0.2520 |   | 0.2520                            |                    | 0.9683 | 3.9690 |
| 200                                                       |          |     |                           |              | 0.9178              |                          | 0.1972       |   | 1.0896                            | 5.0703             |        |        |

## FIGURE D.10 PIECE SIZE DEVELOPMENT TYPE 10: HS-WS-A-A

![](_page_122_Figure_4.jpeg)

#### TABLE D.10: PIECE SIZE DEVELOPMENT TYPE 10: HS-WS-A-A

| Development Type<br>Coefficients |                                                                 |          | а        |                  | b                     |              | с           | d                                 |        | t        |  |        |
|----------------------------------|-----------------------------------------------------------------|----------|----------|------------------|-----------------------|--------------|-------------|-----------------------------------|--------|----------|--|--------|
| Softwood                         |                                                                 | 1.029280 |          | )E+01 7.000593E- |                       | -03          |             |                                   |        |          |  |        |
| Hardwood 1.1                     |                                                                 |          | 1.145453 | E+01             | 1.226536E             | -02          |             |                                   |        |          |  |        |
| Age<br>Class                     | Age Observed Average Piece Size<br>lass (trees/m <sup>3</sup> ) |          |          |                  | Predicted I<br>(trees | Piec<br>s/m³ | e Size<br>) | Predicted Piece Size<br>(m³/tree) |        |          |  |        |
| (yrs)                            | Softwood                                                        | Har      | dwood    | S                | oftwood               | H            | ardwood     | Softwood                          |        | Hardwood |  |        |
| 10                               |                                                                 |          |          |                  | 9.5969                |              | 10.1323     | 0.1042                            |        | 0.0987   |  |        |
| 20                               |                                                                 |          |          |                  | 8.9480                |              | 8.9628      | 0.1118                            |        | 0.1116   |  |        |
| 30                               | 5.1627                                                          | 14       | .6837    |                  | 8.3430                |              | 7.9282      | 0.1199                            |        | 0.1261   |  |        |
| 40                               | 7.2965                                                          | 3.       | 8058     |                  | 7.7789                |              | 7.0130      | 0.1286                            |        | 0.1426   |  |        |
| 50                               | 7.0931                                                          | 6.       | 2877     |                  | 7.2530                |              | 6.2035      | 0.1379                            |        | 0.1612   |  |        |
| 60                               | 7.5527                                                          | 5.       | 6853     |                  | 6.7626                |              | 5.4875      | 0.1479                            |        | 0.1822   |  |        |
| 70                               | 6.0441                                                          | 4.       | 1817     |                  | 6.3054                |              | 4.8540      | 0.1586                            |        | 0.2060   |  |        |
| 80                               | 6.7079                                                          | 4.       | 9847     | 5.8791           |                       |              | 4.2937      | 0.1701                            |        | 0.2329   |  |        |
| 90                               | 5.8471                                                          | 3.       | 3354     |                  | 5.4816                |              | 3.7981      | 0.1824                            |        | 0.2633   |  |        |
| 100                              | 0.6703                                                          | 2.       | 3575     |                  | j.1109 3.359          |              | 3.3597      | 0.1957                            |        | 0.2976   |  |        |
| 110                              | 1.6642                                                          | 3.       | 5170     |                  | 4.7654                |              | 2.9719      | 0.2098                            |        | 0.3365   |  |        |
| 120                              | 5.7060                                                          | 3.       | 8780     |                  | 4.4432                |              | 2.6288      | 0.2251                            |        | 0.3804   |  |        |
| 130                              | 3.7657                                                          | 5.       | 5170     |                  | 4.1428                |              | 2.3254      | 0.2414                            |        | 0.4300   |  |        |
| 140                              |                                                                 |          |          |                  | 3.8627                |              | 2.0570      | 0.2589                            |        | 0.4862   |  |        |
| 150                              |                                                                 |          |          |                  | 3.6015                |              | 1.8195      | 0.2777                            |        | 0.5496   |  |        |
| 160                              |                                                                 |          |          |                  | 3.3580                |              | 1.6095      | 0.2978                            |        | 0.6213   |  |        |
| 170                              |                                                                 |          |          |                  | 3.1310                |              | 1.4237      | 0.3194                            |        | 0.7024   |  |        |
| 180                              |                                                                 |          |          |                  | 2.9193                |              | 1.2594      | 0.3426                            |        | 0.7940   |  |        |
| 190                              |                                                                 |          |          |                  | 2.7219                |              | 2.7219      |                                   | 1.1140 | 0.3674   |  | 0.8977 |
| 200                              |                                                                 |          |          |                  | 2.5379                |              | 0.9854      | 0.3940                            |        | 1.0148   |  |        |

## FIGURE D.11 PIECE SIZE DEVELOPMENT TYPE 11: HS-JP-A-A

![](_page_123_Figure_3.jpeg)

#### TABLE D.11: PIECE SIZE DEVELOPMENT TYPE 11: HS-JP-A-A

| Dev          | velopment Type<br>Coefficients                         |     | а                         |                                                 | b         |             | с             |                                   | d <sup>19</sup> | t        |     |        |
|--------------|--------------------------------------------------------|-----|---------------------------|-------------------------------------------------|-----------|-------------|---------------|-----------------------------------|-----------------|----------|-----|--------|
| Softwood     |                                                        |     | 1.022279                  | E+01                                            | 9.769422E | -03         |               | 4.472449E-01                      |                 | 0        |     |        |
| Hardwood     |                                                        |     | 3.185340E+01 3.109161E-02 |                                                 |           | -02         |               |                                   |                 |          |     |        |
| Age<br>Class | Observed Average Piece Size<br>(trees/m <sup>3</sup> ) |     |                           | Predicted Piece Size<br>(trees/m <sup>3</sup> ) |           |             |               | Predicted Piece Size<br>(m³/tree) |                 |          |     |        |
| (yrs)        | Softwood                                               | Har | dwood                     | S                                               | oftwood   | Н           | ardwood       | Softw                             | /ood            | Hardwood |     |        |
| 10           |                                                        |     |                           |                                                 | 9.2713    |             | 23.3414       | 0.10                              | )79             | 0.0428   |     |        |
| 20           |                                                        |     |                           |                                                 | 8.4084    |             | 17.1040       | 0.11                              | 89              | 0.0585   |     |        |
| 30           | 5.4900                                                 | 18  | 8.0864                    |                                                 | 7.6258    |             | 12.5334       | 0.13                              | 311             | 0.0798   |     |        |
| 40           | 3.9066                                                 | 6   | .3876                     |                                                 | 6.9160    |             | 9.1842        | 0.14                              | 46              | 0.1089   |     |        |
| 50           | 5.9775                                                 | 4   | .8742                     |                                                 | 6.2723    |             | 6.7299        | 0.15                              | 594             | 0.1486   |     |        |
| 60           | 5.8382                                                 | 7   | .0799                     |                                                 | 5.6885    |             | 4.9315        | 0.17                              | '58             | 0.2028   |     |        |
| 70           | 8.0191                                                 | 2   | .9267                     | 5.1591                                          |           |             | 3.6137        | 0.19                              | 38              | 0.2767   |     |        |
| 80           | 8.6239                                                 | 2   | .8728                     |                                                 | 4.6789    |             | 2.6480        | 0.21                              | 37              | 0.3776   |     |        |
| 90           |                                                        |     |                           |                                                 | 4.2434    |             | 1.9404        | 0.23                              | 357             | 0.5154   |     |        |
| 100          |                                                        |     |                           |                                                 | 3.8485    |             | 3.8485 1.4219 |                                   | 1.4219          | 0.25     | 598 | 0.7033 |
| 110          |                                                        |     |                           |                                                 | 3.4903    | 903 1.0419  |               | 0.28                              | 865             | 0.9598   |     |        |
| 120          |                                                        |     |                           |                                                 | 3.1654    | 1654 0.7635 |               | 0.31                              | 59              | 1.3098   |     |        |
| 130          |                                                        |     |                           |                                                 | 2.8708    |             | 0.5595        | 0.34                              | 83              | 1.7874   |     |        |
| 140          |                                                        |     |                           |                                                 | 2.6036    |             | 0.4100        | 0.38                              | 341             | 2.4392   |     |        |
| 150          |                                                        |     |                           |                                                 | 2.3613    |             | 0.3004        | 0.42                              | 235             | 3.3288   |     |        |
| 160          |                                                        |     |                           |                                                 | 2.1415    |             | 0.2201        | 0.46                              | 670             | 4.5427   |     |        |
| 170          |                                                        |     |                           |                                                 | 1.9422    |             | 0.1613        | 0.51                              | 49              | 6.1993   |     |        |
| 180          |                                                        |     |                           |                                                 | 1.7614    |             | 0.1182        | 0.56                              | 677             | 8.4600   |     |        |
| 190          |                                                        |     |                           |                                                 | 1.5975    |             | 0.0866        | 0.62                              | 260             | 11.5451  |     |        |
| 200          |                                                        |     |                           |                                                 | 1.4488    |             | 0.0635        | 0.69                              | 02              | 15.7553  |     |        |

<sup>19</sup> The softwood piece data for HS-JP-A-A was guided with data from S-JP-LM and SH-JP-A-A.

## FIGURE D.12 PIECE SIZE DEVELOPMENT TYPE 12: H-A-LD-A-1

![](_page_124_Figure_3.jpeg)

#### TABLE D.12: PIECE SIZE DEVELOPMENT TYPE 12: H-A-LD-A-1

| Dev          | Development Type<br>Coefficients                       |     | а            |                                    | b             | b             |               |   | <b>d</b> <sup>20</sup> | t                  |
|--------------|--------------------------------------------------------|-----|--------------|------------------------------------|---------------|---------------|---------------|---|------------------------|--------------------|
| Softwood     |                                                        |     | 8.665846     | E+00                               | 9.708316E     | -03           | 03            |   | 4.677981E+00           | 0                  |
| Hardwood     |                                                        |     | 1.757841E+01 |                                    | 1.357217E-02  |               |               |   | 5.408412E+00           | 0                  |
| Age<br>Class | Observed Average Piece Size<br>(trees/m <sup>3</sup> ) |     | ece Size     | Predicted Piece Size<br>(trees/m³) |               |               | ce Size<br>3) |   | Predicted I<br>(m³/t   | Piece Size<br>ree) |
| (yrs)        | Softwood                                               | Har | dwood        | So                                 | oftwood       | H             | lardwood      | S | Softwood               | Hardwood           |
| 10           |                                                        |     |              |                                    | 7.8641        |               | 15.3475       |   | 0.1272                 | 0.0652             |
| 20           |                                                        |     |              |                                    | 7.1365        |               | 13.3996       |   | 0.1401                 | 0.0746             |
| 30           |                                                        |     |              |                                    | 6.4762        |               | 11.6990       |   | 0.1544                 | 0.0855             |
| 40           |                                                        | 6   | .5034        |                                    | 5.8771        |               | 10.2143       |   | 0.1702                 | 0.0979             |
| 50           |                                                        | 8   | .5181        |                                    | 5.3333        |               | 8.9179        |   | 0.1875                 | 0.1121             |
| 60           | 7.0407                                                 | 7   | .9555        | 4.8399                             |               |               | 7.7861        |   | 0.2066                 | 0.1284             |
| 70           |                                                        | 2   | .5269        | 4.3921                             |               |               | 6.7979        |   | 0.2277                 | 0.1471             |
| 80           | 3.3236                                                 | 5   | .6466        | 3.9857                             |               |               | 5.9352        |   | 0.2509                 | 0.1685             |
| 90           |                                                        |     |              | 3.6170                             |               |               | 5.1819        |   | 0.2765                 | 0.1930             |
| 100          | 1.6163                                                 | 7   | .3333        |                                    | 3.2823 4.5243 |               | 4.5243        |   | 0.3047                 | 0.2210             |
| 110          |                                                        |     |              |                                    | 2.9787        | 2.9787 3.9501 |               |   | 0.3357                 | 0.2532             |
| 120          |                                                        |     |              |                                    | 2.7031        |               | 3.4487        |   | 0.3699                 | 0.2900             |
| 130          |                                                        |     |              |                                    | 2.4530        | 3.0111        |               |   | 0.4077                 | 0.3321             |
| 140          |                                                        |     |              |                                    | 2.2260        |               | 2.6289        |   | 0.4492                 | 0.3804             |
| 150          |                                                        |     |              |                                    | 2.0201        | 0201 2.2953   |               |   | 0.4950                 | 0.4357             |
| 160          |                                                        |     |              |                                    | 1.8332        |               | 2.0040        |   | 0.5455                 | 0.4990             |
| 170          |                                                        |     |              |                                    | 1.6636        |               | 1.7496        |   | 0.6011                 | 0.5716             |
| 180          |                                                        |     |              |                                    | 1.5097        |               | 1.5276        |   | 0.6624                 | 0.6546             |
| 190          |                                                        |     |              |                                    | 1.3700        |               | 1.3337        |   | 0.7299                 | 0.7498             |
| 200          |                                                        |     |              |                                    | 1.2432        |               | 1.1644        |   | 0.8043                 | 0.8588             |

<sup>20</sup> The softwood piece data for H-A-LD-A-1 was guided with data from H-A-HD-A-1 and the hardwood piece size data was guided with H-A-LD-A-2.

## FIGURE D.13 PIECE SIZE DEVELOPMENT TYPE 13: H-A-LD-A-2

![](_page_125_Figure_3.jpeg)

#### TABLE D.13: PIECE SIZE DEVELOPMENT TYPE 13: H-A-LD-A-2

| Dev      | velopment Type<br>Coefficients |      | а         |        | b             |                     | с       | <b>d</b> <sup>21</sup> |       | t        |
|----------|--------------------------------|------|-----------|--------|---------------|---------------------|---------|------------------------|-------|----------|
| Softwood |                                |      | 1.493007E | E+01   | 9.122216E-    | 03                  |         | 2.797621E+00           |       | 0        |
| Hardwood |                                |      | 1.750402E | E+01   | 1.928773E-    | 02                  |         |                        |       |          |
| Age      | Age Observed Average Piece     |      | ece Size  |        | Predicted I   | Piec                | e Size  | Predicted Piece Size   |       |          |
| Class    | (trees                         | /m³) |           |        | (trees        | <mark>s/m³</mark> ) | )       | (                      | m³/tr | ee)      |
| (yrs)    | Softwood                       | Har  | dwood     | Sc     | oftwood       | Н                   | ardwood | Softwood               |       | Hardwood |
| 10       |                                |      |           | 1      | 3.6284        |                     | 14.4335 | 0.0734                 |       | 0.0693   |
| 20       |                                |      |           | 1      | 2.4402        |                     | 11.9016 | 0.0804                 |       | 0.0840   |
| 30       |                                | 5.   | 7183      | 1      | 1.3556        |                     | 9.8139  | 0.0881                 |       | 0.1019   |
| 40       |                                |      |           | 1      | 0.3656        |                     | 8.0924  | 0.0965                 |       | 0.1236   |
| 50       | 9.8293                         | 9.   | 1622      |        | 9.4618        |                     | 6.6728  | 0.1057                 |       | 0.1499   |
| 60       | 2.1501                         | 4.   | .9747     |        | 8.6369        |                     | 5.5023  | 0.1158                 |       | 0.1817   |
| 70       | 8.8590                         | 4.   | 3636      | 7.8839 |               |                     | 4.5371  | 0.1268                 |       | 0.2204   |
| 80       | 10.0474                        | 3.   | 4582      | 7.1965 |               |                     | 3.7412  | 0.1390                 |       | 0.2673   |
| 90       | 0.7712                         | 2    | 2795      |        | 6.5691        |                     | 3.0849  | 0.1522                 |       | 0.3242   |
| 100      |                                |      |           |        | 5.9964 2.54   |                     | 2.5438  | 0.1668                 |       | 0.3931   |
| 110      |                                |      |           |        | 5.4736 2.0976 |                     | 2.0976  | 0.1827                 |       | 0.4767   |
| 120      |                                |      |           |        | 4.9964        | .9964 1.7296        |         | 0.2001                 |       | 0.5782   |
| 130      |                                |      |           |        | 4.5608        | 1.4262              |         | 0.2193                 |       | 0.7012   |
| 140      |                                |      |           |        | 4.1631        |                     | 1.1760  | 0.2402                 |       | 0.8503   |
| 150      |                                |      |           |        | 3.8002        |                     | 0.9697  | 0.2631                 |       | 1.0312   |
| 160      |                                |      |           |        | 3.4688        |                     | 0.7996  | 0.2883                 |       | 1.2506   |
| 170      |                                |      |           |        | 3.1664        |                     | 0.6594  | 0.3158                 |       | 1.5166   |
| 180      |                                |      |           |        | 2.8904        |                     | 0.5437  | 0.3460                 |       | 1.8393   |
| 190      |                                |      |           |        | 2.6384        |                     | 0.4483  | 0.3790                 |       | 2.2305   |
| 200      |                                |      |           |        | 2.4083        |                     | 0.3697  | 0.4152                 |       | 2.7050   |

<sup>&</sup>lt;sup>21</sup> The softwood piece data for H-A-LD-A-2 was guided with data H-A-HD-A-2.

## FIGURE D.14 PIECE SIZE DEVELOPMENT TYPE 14: H-A-HD-A-1

![](_page_126_Figure_3.jpeg)

#### TABLE D.14: PIECE SIZE DEVELOPMENT TYPE 14: H-A-HD-A-1

| Dev          | velopment Type<br>Coefficients                                |     | а              |                                    | b            |     | с       | d                                 | t        |  |
|--------------|---------------------------------------------------------------|-----|----------------|------------------------------------|--------------|-----|---------|-----------------------------------|----------|--|
| Softwood     |                                                               |     | 1.258294       | E+01                               | 8.675243E-   | -03 |         |                                   |          |  |
| Hardwood     |                                                               |     | 3.401042E+01 2 |                                    | 2.699109E-02 |     |         |                                   |          |  |
| Age<br>Class | ge Observed Average Piece Size<br>ass (trees/m <sup>3</sup> ) |     |                | Predicted Piece Size<br>(trees/m³) |              |     |         | Predicted Piece Size<br>(m³/tree) |          |  |
| (yrs)        | Softwood                                                      | Har | dwood          | S                                  | oftwood      | H   | ardwood | Softwood                          | Hardwood |  |
| 10           |                                                               |     |                | •                                  | 11.5373      |     | 25.9652 | 0.0867                            | 0.0385   |  |
| 20           |                                                               |     |                |                                    | 10.5786      |     | 19.8230 | 0.0945                            | 0.0504   |  |
| 30           | 14.3387                                                       | 15  | 5.5870         |                                    | 9.6996       |     | 15.1339 | 0.1031                            | 0.0661   |  |
| 40           | 3.7757                                                        | 10  | 0.0026         |                                    | 8.8936       |     | 11.5539 | 0.1124                            | 0.0866   |  |
| 50           | 4.5401                                                        | 9   | .1950          |                                    | 8.1546       |     | 8.8208  | 0.1226                            | 0.1134   |  |
| 60           | 5.8213                                                        | 6   | .8223          |                                    | 7.4770       |     | 6.7342  | 0.1337                            | 0.1485   |  |
| 70           | 7.6394                                                        | 4   | .9424          |                                    | 6.8557       |     | 5.1412  | 0.1459                            | 0.1945   |  |
| 80           | 7.6744                                                        | 3   | .3786          |                                    | 6.2860       |     | 3.9251  | 0.1591                            | 0.2548   |  |
| 90           | 6.2291                                                        | 2   | .8738          |                                    | 5.7636       |     | 2.9966  | 0.1735                            | 0.3337   |  |
| 100          | 7.5810                                                        | 4   | .3003          |                                    | 5.2847       |     | 2.2877  | 0.1892                            | 0.4371   |  |
| 110          |                                                               |     |                |                                    | 4.8456       |     | 1.7466  | 0.2064                            | 0.5726   |  |
| 120          |                                                               |     |                |                                    | 4.4429       |     | 1.3334  | 0.2251                            | 0.7500   |  |
| 130          |                                                               |     |                |                                    | 4.0737       |     | 1.0180  | 0.2455                            | 0.9823   |  |
| 140          |                                                               |     |                |                                    | 3.7352       |     | 0.7772  | 0.2677                            | 1.2867   |  |
| 150          |                                                               |     |                |                                    | 3.4248       |     | 0.5933  | 0.2920                            | 1.6854   |  |
| 160          |                                                               |     |                |                                    | 3.1403       |     | 0.4530  | 0.3184                            | 2.2076   |  |
| 170          |                                                               |     |                |                                    | 2.8793       |     | 0.3458  | 0.3473                            | 2.8916   |  |
| 180          |                                                               |     |                |                                    | 2.6401       |     | 0.2640  | 0.3788                            | 3.7876   |  |
| 190          |                                                               |     |                |                                    | 2.4207       |     | 0.2016  | 0.4131                            | 4.9612   |  |
| 200          |                                                               |     |                |                                    | 2.2195       |     | 0.1539  | 0.4505                            | 6.4984   |  |

## FIGURE D.15 PIECE SIZE DEVELOPMENT TYPE 15: H-A-HD-A-2

![](_page_127_Figure_3.jpeg)

#### TABLE D.15: PIECE SIZE DEVELOPMENT TYPE 15: H-A-HD-A-2

| Dev          | velopment Type<br>Coefficients                                 |     | а                         |                                                 | b         |           | с        |                                   | d       | t        |
|--------------|----------------------------------------------------------------|-----|---------------------------|-------------------------------------------------|-----------|-----------|----------|-----------------------------------|---------|----------|
| Softwood     |                                                                |     | 1.217425                  | E+01                                            | 9.183878E | -03       |          |                                   |         |          |
| Hardwood     |                                                                |     | 3.384811E+01 3.170011E-02 |                                                 |           |           |          |                                   |         |          |
| Age<br>Class | Age Observed Average Piece Si<br>Class (trees/m <sup>3</sup> ) |     |                           | Predicted Piece Size<br>(trees/m <sup>3</sup> ) |           |           |          | Predicted Piece Size<br>(m³/tree) |         |          |
| (yrs)        | Softwood                                                       | Har | dwood                     | S                                               | oftwood   | H         | lardwood | So                                | oftwood | Hardwood |
| 10           |                                                                |     |                           |                                                 | 11.1060   |           | 24.6526  | (                                 | 0.0900  | 0.0406   |
| 20           |                                                                |     |                           |                                                 | 10.1315   |           | 17.9552  | (                                 | 0.0987  | 0.0557   |
| 30           | 2.8457                                                         | 15  | 5.7066                    |                                                 | 9.2424    |           | 13.0773  | (                                 | 0.1082  | 0.0765   |
| 40           | 8.9981                                                         | 7   | .3333                     |                                                 | 8.4314    |           | 9.5246   | (                                 | 0.1186  | 0.1050   |
| 50           | 7.6574                                                         | 7   | .3060                     |                                                 | 7.6916    |           | 6.9371   | (                                 | 0.1300  | 0.1442   |
| 60           | 7.9102                                                         | 4   | .4655                     | 7.0167                                          |           |           | 5.0525   | (                                 | 0.1425  | 0.1979   |
| 70           | 5.6503                                                         | 4   | .3327                     | 6.4010                                          |           |           | 3.6799   | (                                 | 0.1562  | 0.2717   |
| 80           | 5.7869                                                         | 3   | .0781                     | 5.8393                                          |           |           | 2.6802   | (                                 | 0.1713  | 0.3731   |
| 90           | 5.2810                                                         | 2   | .3051                     |                                                 | 5.3269    |           | 1.9520   | (                                 | 0.1877  | 0.5123   |
| 100          |                                                                |     |                           |                                                 | 4.8595    |           | 1.4217   | (                                 | 0.2058  | 0.7034   |
| 110          |                                                                |     |                           |                                                 | 4.4331    | 31 1.0355 |          | (                                 | 0.2256  | 0.9657   |
| 120          |                                                                |     |                           |                                                 | 4.0441    |           | 0.7542   | (                                 | 0.2473  | 1.3260   |
| 130          |                                                                |     |                           |                                                 | 3.6892    |           | 0.5493   | (                                 | 0.2711  | 1.8205   |
| 140          |                                                                |     |                           |                                                 | 3.3655    |           | 0.4001   | (                                 | 0.2971  | 2.4996   |
| 150          |                                                                |     |                           |                                                 | 3.0702    |           | 0.2914   | (                                 | 0.3257  | 3.4320   |
| 160          |                                                                |     |                           |                                                 | 2.8008    |           | 0.2122   | (                                 | 0.3570  | 4.7121   |
| 170          |                                                                |     |                           |                                                 | 2.5550    |           | 0.1546   | (                                 | 0.3914  | 6.4697   |
| 180          |                                                                |     |                           |                                                 | 2.3308    |           | 0.1126   | (                                 | 0.4290  | 8.8830   |
| 190          |                                                                |     |                           |                                                 | 2.1263    |           | 0.0820   | (                                 | 0.4703  | 12.1964  |
| 200          |                                                                |     |                           |                                                 | 1.9397    |           | 0.0597   | (                                 | 0.5155  | 16.7456  |

## FIGURE D.16 PIECE SIZE DEVELOPMENT TYPE 16: H(S)-A-LD-A

![](_page_128_Figure_3.jpeg)

#### TABLE D.16: PIECE SIZE DEVELOPMENT TYPE 16: H(S)-A-LD-A

| Dev          | Development Type<br>Coefficients                              |     | а        |                       | b                                  | с   |         |      | d                                 | t        |  |
|--------------|---------------------------------------------------------------|-----|----------|-----------------------|------------------------------------|-----|---------|------|-----------------------------------|----------|--|
| Softwood     |                                                               |     | 1.331409 | E+01                  | 9.326052E-                         | -03 |         |      |                                   |          |  |
| Hardwood     |                                                               |     | 1.980868 | .980868E+01 1.886610E |                                    |     |         |      |                                   |          |  |
| Age<br>Class | ge Observed Average Piece Size<br>ass (trees/m <sup>3</sup> ) |     |          |                       | Predicted Piece Size<br>(trees/m³) |     |         |      | Predicted Piece Size<br>(m³/tree) |          |  |
| (yrs)        | Softwood                                                      | Har | dwood    | S                     | oftwood                            | Н   | ardwood | Soft | wood                              | Hardwood |  |
| 10           |                                                               |     |          | `                     | 12.1286                            |     | 16.4029 | 0.0  | 825                               | 0.0610   |  |
| 20           |                                                               |     |          | •                     | 11.0486                            |     | 13.5827 | 0.0  | 905                               | 0.0736   |  |
| 30           |                                                               |     |          | •                     | 10.0648                            |     | 11.2474 | 0.0  | 994                               | 0.0889   |  |
| 40           | 6.3186                                                        | 5   | .5904    |                       | 9.1686                             |     | 9.3136  | 0.1  | 091                               | 0.1074   |  |
| 50           | 8.6554                                                        | 8   | .5743    |                       | 8.3522                             |     | 7.7123  | 0.1  | 197                               | 0.1297   |  |
| 60           | 8.9647                                                        | 10  | .7668    |                       | 7.6085                             |     | 6.3863  | 0.1  | 314                               | 0.1566   |  |
| 70           | 7.7215                                                        | 2   | .8678    | 6.9310                |                                    |     | 5.2883  | 0.1  | 443                               | 0.1891   |  |
| 80           | 6.1571                                                        | 5   | .5140    | 6.3138                |                                    |     | 4.3791  | 0.1  | 584                               | 0.2284   |  |
| 90           | 5.9770                                                        | 3   | .9281    |                       | 5.7516                             |     | 3.6261  | 0.1  | 739                               | 0.2758   |  |
| 100          | 3.0117                                                        | 2   | .5099    |                       | 5.2395                             |     | 3.0027  | 0.1  | 909                               | 0.3330   |  |
| 110          | 3.9923                                                        | 2   | .1594    |                       | 4.7729                             |     | 2.4864  | 0.2  | 2095                              | 0.4022   |  |
| 120          | 5.2228                                                        | 4   | .0029    |                       | 4.3479                             |     | 2.0589  | 0.2  | 2300                              | 0.4857   |  |
| 130          |                                                               |     |          |                       | 3.9608                             |     | 1.7049  | 0.2  | 2525                              | 0.5865   |  |
| 140          |                                                               |     |          |                       | 3.6081                             |     | 1.4118  | 0.2  | 2772                              | 0.7083   |  |
| 150          |                                                               |     |          |                       | 3.2868                             |     | 1.1691  | 0.3  | 8042                              | 0.8554   |  |
| 160          |                                                               |     |          |                       | 2.9941                             |     | 0.9681  | 0.3  | 340                               | 1.0330   |  |
| 170          |                                                               |     |          |                       | 2.7275                             |     | 0.8016  | 0.3  | 8666                              | 1.2475   |  |
| 180          |                                                               |     |          |                       | 2.4847                             |     | 0.6638  | 0.4  | 025                               | 1.5065   |  |
| 190          |                                                               |     |          |                       | 2.2634                             |     | 0.5497  | 0.4  | 418                               | 1.8193   |  |
| 200          |                                                               |     |          |                       | 2.0619                             |     | 0.4552  | 0.4  | 850                               | 2.1970   |  |

## FIGURE D.17 PIECE SIZE DEVELOPMENT TYPE 17: H(S)-A-HD-A

![](_page_129_Figure_3.jpeg)

#### TABLE D.17: PIECE SIZE DEVELOPMENT TYPE 17: H(S)-A-HD-A

| Dev          | velopment Type<br>Coefficients                         |     | а                     |                                                 | b          |     | с       | d                                 | t        |  |
|--------------|--------------------------------------------------------|-----|-----------------------|-------------------------------------------------|------------|-----|---------|-----------------------------------|----------|--|
| Softwood     |                                                        |     | 1.397298              | E+01                                            | 9.180973E- | -03 |         |                                   |          |  |
| Hardwood     |                                                        |     | 2.018677E+01 2.150009 |                                                 |            | 02  |         |                                   |          |  |
| Age<br>Class | Observed Average Piece Size<br>(trees/m <sup>3</sup> ) |     |                       | Predicted Piece Size<br>(trees/m <sup>3</sup> ) |            |     |         | Predicted Piece Size<br>(m³/tree) |          |  |
| (yrs)        | Softwood                                               | Har | dwood                 | S                                               | oftwood    | Н   | ardwood | Softwood                          | Hardwood |  |
| 10           |                                                        |     |                       |                                                 | 12.7473    |     | 16.2814 | 0.0784                            | 0.0614   |  |
| 20           |                                                        |     |                       |                                                 | 11.6290    |     | 13.1317 | 0.0860                            | 0.0762   |  |
| 30           | 7.5815                                                 | 10  | .7932                 |                                                 | 10.6089    |     | 10.5912 | 0.0943                            | 0.0944   |  |
| 40           | 10.4582                                                | 8   | .0320                 |                                                 | 9.6783     |     | 8.5422  | 0.1033                            | 0.1171   |  |
| 50           | 8.6675                                                 | 7   | .9779                 |                                                 | 8.8293     |     | 6.8897  | 0.1133                            | 0.1451   |  |
| 60           | 8.3186                                                 | 4   | .0416                 |                                                 | 8.0548     |     | 5.5568  | 0.1241                            | 0.1800   |  |
| 70           | 7.3718                                                 | 5   | .2889                 |                                                 | 7.3482     |     | 4.4818  | 0.1361                            | 0.2231   |  |
| 80           | 7.0191                                                 | 3   | 7955                  | 6.7036                                          |            |     | 3.6147  | 0.1492                            | 0.2766   |  |
| 90           | 5.2329                                                 | 1   | .9621                 |                                                 | 6.1156     |     | 2.9154  | 0.1635                            | 0.3430   |  |
| 100          | 2.5557                                                 | 2   | 1755                  |                                                 | 5.5791     |     | 2.3514  | 0.1792                            | 0.4253   |  |
| 110          | 4.9375                                                 | 2   | .0164                 |                                                 | 5.0897     |     | 1.8965  | 0.1965                            | 0.5273   |  |
| 120          |                                                        |     |                       |                                                 | 4.6432     |     | 1.5296  | 0.2154                            | 0.6538   |  |
| 130          |                                                        |     |                       |                                                 | 4.2359     |     | 1.2337  | 0.2361                            | 0.8106   |  |
| 140          |                                                        |     |                       |                                                 | 3.8643     |     | 0.9950  | 0.2588                            | 1.0050   |  |
| 150          |                                                        |     |                       |                                                 | 3.5253     |     | 0.8025  | 0.2837                            | 1.2461   |  |
| 160          |                                                        |     |                       |                                                 | 3.2161     |     | 0.6473  | 0.3109                            | 1.5449   |  |
| 170          |                                                        |     |                       |                                                 | 2.9340     |     | 0.5221  | 0.3408                            | 1.9155   |  |
| 180          |                                                        |     |                       |                                                 | 2.6766     |     | 0.4211  | 0.3736                            | 2.3750   |  |
| 190          |                                                        |     |                       | 2.4418                                          |            |     | 0.3396  | 0.4095                            | 2.9446   |  |
| 200          |                                                        |     |                       |                                                 | 2.2276     |     | 0.2739  | 0.4489                            | 3.6510   |  |

![](_page_130_Picture_0.jpeg)

# **APPENDIX E: DATA SUBMISSION**

This appendix provides dictionaries and description of the digital data submission related to the Wood Supply Model.

The planning inventory layer was updated prior to the wood supply modeling to include the old caribou ranges, the tactical plan blocks, the year of origin (YOO), old forest, planned and harvested blocks, and productive forest identifier (area included within the wood supply model).

The new fields that were added to the original planning inventory are included within the data dictionary (Table E.1). To account for the 2016 harvested blocks, the following fields were utilized:

- AOP\_YEAR = 2016
- BLOCSTAT = "CUT"

![](_page_131_Picture_2.jpeg)

#### File: Landbase20160616\_Caribou\_Tactical

Number of data records: 946,142

## TABLE E.1: FOREST COMPOSITE DATABASE STRUCTURE AND DESCRIPTION

| FIELD<br>NO. | FIELD NAME              | FIELD<br>TYPE | FIELD<br>WIDTH | NO. OF<br>DECIMALS | FIELD DESCRIPTION                                                                                                                                                                                                                                                                                                                                                 |
|--------------|-------------------------|---------------|----------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.           | TIMBER_SUPPLY_A<br>REAS | String        | 25             | 0                  | Timber Supply Areas:<br>L&M Wood Products;<br>Mistik                                                                                                                                                                                                                                                                                                              |
| 2.           | GL20160616              | Numeric       | 11             | 2                  | Unique spatial identifier                                                                                                                                                                                                                                                                                                                                         |
| 3.           | MU                      | String        | 2              | 0                  | Manangement unit number identified as follows:<br>• 01-Divide;<br>• Pierceland;<br>• Big Island Lake;<br>• Waterhen;<br>• 07- Beauval;<br>• 08- Canoe Lake;<br>• 09- Ile-a-la-Crosse;<br>• 10- Buffalo Narrows;<br>• 11- Dillon;<br>• 12- Murray Bay;<br>• 20- Beaver River;<br>• 21- Peter Pond;<br>• 78- Recreation Area;<br>• 79- Timber Reserve;<br>• 85- L&M |
| 4.           | MU_NAME                 | String        | 40             | 0                  | Manangement unit name identified as follows:<br>• Beauval;<br>• Beaver river;<br>• Big island lake;<br>• Buffalo Narrows;<br>• Canoe Lake;<br>• Dillon;<br>• Divide;<br>• Ile-a-la-Crosse;<br>• L & M;<br>• Murray Bay;<br>• Peter Pond;<br>• Pierceland;<br>• Recreation Area;<br>• Timber Reserve;<br>• Waterhen                                                |
| 5.           | OP_AREA                 | String        | 6              | 0                  | Management unit and Operating area code                                                                                                                                                                                                                                                                                                                           |
| 6.           | OP_NAME                 | String        | 40             | 0                  | Operating area name                                                                                                                                                                                                                                                                                                                                               |
| 7.           | OP_NUM                  | String        | 3              | 0                  | Operating area number                                                                                                                                                                                                                                                                                                                                             |
| 8.           | SEASON                  | String        | 10             | 0                  | Harvest Season:<br>◆ ALL_SEASON;<br>◆ WINTER                                                                                                                                                                                                                                                                                                                      |

![](_page_132_Picture_0.jpeg)

![](_page_132_Picture_2.jpeg)

| FIELD<br>NO. | FIELD NAME               | FIELD<br>TYPE | FIELD<br>WIDTH | NO. OF<br>DECIMALS | FIELD DESCRIPTION                                                                                                   |
|--------------|--------------------------|---------------|----------------|--------------------|---------------------------------------------------------------------------------------------------------------------|
| 9.           | WATERSHED_NUMB<br>ER     | String        | 10             | 0                  | Watershed:<br>• 5EG;<br>• 5GE;<br>• 5GF;<br>• 6AE;<br>• 6AF;<br>• 6BB;<br>• 6BC;<br>• 6CC                           |
| 10.          | WATERSHED_NUMB<br>ER2    | String        | 10             | 0                  | Watershed 2:<br>• 5EF;<br>• 5EG;<br>• 6AD;<br>• 6AF;<br>• 6AG;<br>• 6BA;<br>• 6BB;<br>• 6BD                         |
| 11.          | WILDLIFE_ZONE_NU<br>MBER | String        | 16             | 0                  | Wildlife management zone number:<br>• ZONE 47;<br>• ZONE 55;<br>• ZONE 66;<br>• ZONE 67;<br>• ZONE 69;<br>• ZONE 73 |
| 12.          | DEER_LICNO               | String        | 100            | 0                  | White Tailed Deer Outfitting License Number                                                                         |
| 13.          | BEAR_LICNO               | String        | 100            | 0                  | Black Bear Outfitting License Number C2005                                                                          |
| 14.          | DMT_HOST                 | String        | 2              | 0                  | Dwarf mistletoe host:<br>PJ- Jack Pine                                                                              |
| 15.          | DMT_SEVER                | String        | 1              | 0                  | Dwarf mistletoe severeity:<br>S- Severe                                                                             |
| 16.          | DMT_DATE                 | String        | 9              | 0                  | Dwarf mistletoe date:                                                                                               |
| 17.          | BUDWORM_YEAR             | String        | 50             | 0                  | Budworm defoliation year                                                                                            |
| 18.          | BUDWORM_DEFO             | String        | 50             | 0                  | Budworm defoliation severeity:<br>◆ Moderate<br>◆ Severe                                                            |
| 19.          | SK_ssi                   | Numeric       | 11             | 2                  | Stand susceptiability index                                                                                         |
| 20.          | ABIOTIC_YEAR             | Numeric       | 11             | 2                  | Abiotic year of disturbance                                                                                         |
| 21.          | ABIOTIC_TYPE             | String        | 50             | 0                  | Abiotic disturbance: What Is the 3?<br>• 3-"Other";<br>• FLOOD;<br>• WINDTHROW                                      |
| 22.          | BIOTIC_YEAR              | Numeric       | 11             | 2                  | Biotic year of disturbance:                                                                                         |
| 23.          | BIOTIC_TYPE              | String        | 50             | 0                  | Biotic disturbance:<br>• EASTERN LARCH BEETLE;<br>• HARDWOOD DEFOLIATION;<br>• SPRUCE NEEDLE RUST                   |

![](_page_133_Picture_0.jpeg)

![](_page_133_Picture_2.jpeg)

| FIELD<br>NO. | FIELD NAME | FIELD<br>TYPE | FIELD<br>WIDTH | NO. OF<br>DECIMALS | FIELD DESCRIPTION                                                                                                                                                                                            |
|--------------|------------|---------------|----------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24.          | SOIL_NAME  | String        | 40             | 0                  | <ul> <li>◆ BOREAL TRANSITION</li> <li>◆ MID-BOREAL UPLANDS</li> </ul>                                                                                                                                        |
| 25.          | DEVEL      | String        | 1              | 0                  | Soil development type:<br>• C- Chernozemic;<br>• F- Luvisolic;<br>• M- Eutric Brunisolic;<br>• P- Dystric Brunisolic;<br>• R- Regosolic;<br>• W- Humo-Ferric Podzolic;<br>• X- Fibrisolic;<br>• Y- Mesisolic |
| 26.          | PMDEP      | String        | 2              | 0                  | Parental mode of desposition types:                                                                                                                                                                          |
| 27.          | LOCSF      | String        | 3              | 0                  | Local surface form:<br>• B14- Bog;<br>• B16- Bog;<br>• D- Dissected;<br>• F13- Fen;<br>• H- Hummocky;<br>• K- Knoll and Kettle;<br>• M- Rolling;<br>• U- Undulating;<br>• W- Water                           |
| 28.          | FIRE_NO    | String        | 50             | 0                  | Fire number                                                                                                                                                                                                  |
| 29.          | YEAR       | Numeric       | 11             | 2                  | Fire year                                                                                                                                                                                                    |
| 30.          | FIRENAME   | String        | 40             | 0                  | Fire name                                                                                                                                                                                                    |
| 31.          | FCA        | String        | 5              | 0                  | Fur Conservation Aea:<br>M-37;<br>M-38;<br>M-38B;<br>M-53;<br>M-54;<br>M-55;<br>M-56;<br>M-56;<br>M-58;<br>M-81;<br>M-94;<br>N-12;<br>N-13A;<br>N-13B;<br>N-14;<br>N-15;<br>N-19;<br>N-21;<br>P-88           |

![](_page_134_Picture_0.jpeg)

![](_page_134_Picture_2.jpeg)

(6

| FIELD<br>NO. | FIELD NAME              | FIELD<br>TYPE | FIELD<br>WIDTH | NO. OF<br>DECIMALS | FIELD DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------|-------------------------|---------------|----------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                         | MI            | STIK FORI      | EST OPERATI        | ONS UPDATE                                                                                                                                                                                                                                                                                                                                                                                                      |
| 32.          | BLOCK_ID                | Numeric       | 11             | 2                  | FMS block Id                                                                                                                                                                                                                                                                                                                                                                                                    |
| 33.          | BLOCK_SHAPE_ID          | Numeric       | 15             | 7                  | FMA block shape area                                                                                                                                                                                                                                                                                                                                                                                            |
| 34.          | SHAPSTAT                | String        | 255            | 0                  | Cutblock shape status:<br>◆ ACTUAL<br>◆ PLANNED                                                                                                                                                                                                                                                                                                                                                                 |
| 35.          | AOP_YEAR                | Numeric       | 15             | 7                  | Annual Operating Plan Year                                                                                                                                                                                                                                                                                                                                                                                      |
| 36.          | BLOCSTAT                | String        | 255            | 0                  | Cutblock status:<br>• CUT;<br>• PLANNED                                                                                                                                                                                                                                                                                                                                                                         |
| 37.          | OPENTYPE_CODE           | String        | 255            | 0                  | Harvest Type:<br>• Burrow pit;<br>• CC: Clearcut;<br>• Clearcut (patch);<br>• Clearcut (strip);<br>• Clearcut w/POR;<br>• High Grade;<br>• Other;<br>• Patch Retention;<br>• PC: Partial Cut;<br>• Salvage;<br>• Salvage – burn;<br>• Salvage – burn;<br>• Salvage – mistletoe;<br>• Salvage – mistletoe;<br>• Salvage – windthrow;<br>• Seed Tree (single);<br>• ST: Sanitation Cut;<br>• wS undrstry presrvtn |
| 38.          | BLOCSPECGROU_C<br>ODE   | String        | 255            | 0                  | <ul> <li>Block Species Group Code:</li> <li>C- Coniferous;</li> <li>CD- Conifer leading mixedwood;</li> <li>D- Deciduous;</li> <li>DC-Deciduous leading mixedwood</li> </ul>                                                                                                                                                                                                                                    |
| 39.          | SKID_CLEARANCE_<br>DATE | Date          | 40             | 0                  | Skid Clearance Date (dd-mmm-yyyy)                                                                                                                                                                                                                                                                                                                                                                               |
| 40.          | ESTS_SURVEY_DAT<br>E    | Date          | 40             | 0                  | Date of establishment survey                                                                                                                                                                                                                                                                                                                                                                                    |
| 41.          | Regen_status            | String        | 47             | 0                  | Establishment survey regenerated status:<br>• STOCSTAT-NSR- Not satisfactorily regenerated;<br>• STOCSTAT-SR- Satisfactorily regenerated;<br>• STOCSTAT-SRV- Not satisfactorily vegetated                                                                                                                                                                                                                       |
| 42.          | LFN_SP                  | String        | 47             | 0                  | Leave for Natural Speices:<br>• JP- Jackpine;<br>• TA- Trembling Aspen;<br>• SW- White spruce                                                                                                                                                                                                                                                                                                                   |
| 43.          | LFN_HA                  | Numeric       | 16             | 7                  | Area left for natural (ha) (dd-mmm-yyyy)                                                                                                                                                                                                                                                                                                                                                                        |
| 44.          | LFN_DATE                | Date          | 40             | 0                  | Date of left for natural (dd-mmm-yyyy)                                                                                                                                                                                                                                                                                                                                                                          |

![](_page_135_Picture_0.jpeg)

![](_page_135_Picture_2.jpeg)

(6

| FIELD<br>NO. | FIELD NAME    | FIELD<br>TYPE | FIELD<br>WIDTH | NO. OF<br>DECIMALS | FIELD DESCRIPTION                                                                                                                                                                                                                                      |
|--------------|---------------|---------------|----------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 45.          | PLANT_SP      | String        | 47             | 0                  | Planted Species:<br>• SPEC-BS- Black Spruce<br>• SPEC-JP- Jack Pine<br>• SPEC-LP- Lodgepole Pine<br>• SPEC-OTHER-Other<br>• SPEC-RP- Red Pine<br>• SPEC-SP- Scots Pine<br>• SPEC-SW- White Spruce<br>• SPEC-WB –White Birch<br>• SPEC-WS- White Spruce |
| 46.          | PLANT_HA      | Numeric       | 16             | 7                  | Area Planted (ha)                                                                                                                                                                                                                                      |
| 47.          | PLANT_YEAR    | Numeric       | 31             | 15                 | Plant date (year)                                                                                                                                                                                                                                      |
| 48.          | TEND_TYPE     | String        | 47             | 0                  | Stand tend type:<br>• STANTENDTYPE-CL<br>• STANTENDTYPE-DIE<br>• STANTENDTYPE-SPAC<br>• STANTENDTYPE-THIN                                                                                                                                              |
| 49.          | TEND_HA       | Numeric       | 31             | 15                 | Area tended (ha)                                                                                                                                                                                                                                       |
| 50.          | TEND_DATE     | Date          | 40             | 0                  | Tending date (dd-mmm-yyyy)                                                                                                                                                                                                                             |
| 51.          | VISUAL_WATER  | Numeric       | 11             | 2                  | Visually sensitive area identifier for areas surrounding<br>water:<br>• 0- Not visually sensitive;<br>• 1- visually sensitive                                                                                                                          |
| 52.          | VISUAL_ROADS  | Numeric       | 11             | 2                  | Visually sensitive area identifier for areas surrounding<br>roads:<br>• 0- Not visually sensitive;<br>• 1- Visually sensitive                                                                                                                          |
| 53.          | INOPERABLE    | Numeric       | 11             | 2                  | <ul> <li>Binary identifier of polygons that are inoperable due to slope:</li> <li>0- Operable;</li> <li>1- Inoperable (slope &gt; 30%)</li> </ul>                                                                                                      |
| 54.          | BUF_90        | Numeric       | 11             | 2                  | <ul> <li>Binary Identifier of 90 meter riaparian zones:</li> <li>♦ 0- no 90 metre buffer;</li> <li>♦ 1- 90 metre buffer zone</li> </ul>                                                                                                                |
| 55.          | BUF_30        | Numeric       | 11             | 2                  | <ul> <li>Binary Identifier of 30 meter riaparian zones:</li> <li>♦ 0- no 30 metre buffer;</li> <li>♦ 1- 30 metre buffer zone</li> </ul>                                                                                                                |
| 56.          | BUF_15        | Numeric       | 11             | 2                  | <ul> <li>Binary Identifier of 15 meter riaparian zones:</li> <li>♦ 0- no 15 metre buffer;</li> <li>♦ 1- 15 metre buffer zone</li> </ul>                                                                                                                |
| 57.          | WAT_ISLAND    | Numeric       | 11             | 2                  | Water island identifier:<br>◆ 0- No Water Island;<br>◆ 1- Water island                                                                                                                                                                                 |
| 58.          | LAC_PLONGE    | Numeric       | 11             | 2                  | Lac La Plonge polygon flag:<br>◆ 0- No flag;<br>◆ 2- Lac La Plonge                                                                                                                                                                                     |
| 59.          | Built_ge_1995 | Numeric       | 11             | 2                  | Built greater than 1995 flag:<br>♦ 0- no flag;<br>♦ 1995- built greater than 1995                                                                                                                                                                      |

![](_page_136_Picture_0.jpeg)

![](_page_136_Picture_2.jpeg)

| FIELD<br>NO. | FIELD NAME      | FIELD<br>TYPE | FIELD<br>WIDTH | NO. OF<br>DECIMALS | FIELD DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                          |
|--------------|-----------------|---------------|----------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 60.          | ANTH_DISTURB    | String        | 3              | 0                  | Anthropogenic Disturbance<br>• AGR- Agriculture;<br>• AIR- Airstrip;<br>• BLT- Bult-up areas;<br>• CMP- Camps and lodges;<br>• FLE- Flowline Easement;<br>• GFT- Government Fire Tower;<br>• IND- Industrial areas;<br>• MIN- Mine Sites;<br>• PIT- Gravel Pits;<br>• PTM- Peat moss;<br>• REC- Recreational;<br>• RES- Rural residential;<br>• RWT- Radio Weather Tower;<br>• WFI - Wells |
| 61.          | ANTH_CONFIDENCE | String        | 1              | 0                  | Confidence code:<br>• H- high;<br>• L- low;<br>• M- mid                                                                                                                                                                                                                                                                                                                                    |
| 62.          | Road_update     | Numeric       | 11             | 2                  | Road presence:<br>◆ 0;<br>◆ 2006                                                                                                                                                                                                                                                                                                                                                           |
|              |                 |               | ş              | FVI ATTRIBUTE      | ES                                                                                                                                                                                                                                                                                                                                                                                         |
| 63.          | ID_TILE         | String        | 11             | 0                  | Tile Number made up of zone, easting, and northing.                                                                                                                                                                                                                                                                                                                                        |
| 64.          | STAND           | Numeric       | 11             | 2                  | SFVI Polygon identification number.                                                                                                                                                                                                                                                                                                                                                        |
| 65.          | ID_FOR          | Numeric       | 31             | 15                 | Identification number made up of ID_TILE and Stand.                                                                                                                                                                                                                                                                                                                                        |
| 66.          | CROWN_1         | Numeric       | 11             | 2                  | Crown Closure of layer 1 expressed to the nearest 1%.                                                                                                                                                                                                                                                                                                                                      |
| 67.          | HEIGHT_1        | Numeric       | 11             | 2                  | Average height of layer 1 (m).                                                                                                                                                                                                                                                                                                                                                             |
| 68.          | COMPLX_1        | String        | 1              | 0                  | Canopy structure as follows:<br>• C - Complex;<br>• H - Horizontal.                                                                                                                                                                                                                                                                                                                        |
| 69.          | COMPRG_1        | Numeric       | 11             | 2                  | <ul> <li>Complex Stand Quantifier</li> <li>Complex Stand - Describes Height range;</li> <li>Horizontal Stand - Describes percent of ground area covered by the horizontal component.</li> </ul>                                                                                                                                                                                            |
| 70.          | SP1_1           | String        | 2              | 0                  | <ul> <li>Species 1 of layer 1 as follows:</li> <li>TA - Trembling Aspen;</li> <li>WB - White Birch;</li> <li>BP - Balsam Poplar;</li> <li>BF - Balsam Fir;</li> <li>TL - Larch;</li> <li>JP - Jack Pine;</li> <li>BS - Black Spruce;</li> <li>WS - White Spruce.</li> </ul> Percent Composition for Species 1 of Layer 1.                                                                  |
| /1.          | PER1_1          |               | 11             | 2                  | r crocin composition of openics i of Edger 1.                                                                                                                                                                                                                                                                                                                                              |

![](_page_137_Picture_0.jpeg)

![](_page_137_Picture_2.jpeg)

| FIELD<br>NO. | FIELD NAME | FIELD<br>TYPE | FIELD<br>WIDTH | NO. OF<br>DECIMALS | FIELD DESCRIPTION                                                                                                                                                                                                                                                        |
|--------------|------------|---------------|----------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 72.          | SP2_1      | String        | 2              | 0                  | Species 2 of layer 1 as follows:<br>• TA - Trembling Aspen;<br>• WB - White Birch;<br>• BP - Balsam Poplar;<br>• BF - Balsam Fir;<br>• TL - Larch;<br>• JP - Jack Pine;<br>• BS - Black Spruce;<br>• WS - White Spruce.                                                  |
| 73.          | PER2_1     | Numeric       | 11             | 2                  | Percent Composition for Species 2 of Layer 1.                                                                                                                                                                                                                            |
| 74.          | SP3_1      | String        | 2              | 0                  | Species 3 of layer 1 as follows:<br>• TA - Trembling Aspen;<br>• WB - White Birch;<br>• BP - Balsam Poplar;<br>• BF - Balsam Fir;<br>• TL - Larch;<br>• JP - Jack Pine;<br>• BS - Black Spruce;<br>• WS - White Spruce.                                                  |
| 75.          | PER3_1     | Numeric       | 11             | 2                  | Percent Composition for Species 3 of Layer 1.                                                                                                                                                                                                                            |
| 76.          | SP4_1      | String        | 2              | 0                  | Species 4 of layer 1 as follows:<br>• TA - Trembling Aspen;<br>• WB - White Birch;<br>• BP - Balsam Poplar;<br>• BF - Balsam Fir;<br>• TL - Larch;<br>• JP - Jack Pine;<br>• BS - Black Spruce;<br>• WS - White Spruce.                                                  |
| 77.          | PER4_1     | Numeric       | 11             | 2                  | Percent Composition for Species 4 of Layer 1.                                                                                                                                                                                                                            |
| 78.          | SP5_1      | String        | 2              | 0                  | Species 5 of layer 1 as follows:<br>• TA - Trembling Aspen;<br>• WB - White Birch;<br>• TL - Larch;<br>• JP - Jack Pine;<br>• BS - Black Spruce;<br>• WS - White Spruce.                                                                                                 |
| 79.          | PER5_1     | Numeric       | 11             | 2                  | Percent Composition for Species 5 of Layer 1.                                                                                                                                                                                                                            |
| 80.          | PATTRN_1   | String        | 2              | 0                  | Canopy pattern of layer 1 defined as follows:<br>• P0 - Single stems;<br>• P1 - Single patch of stems;<br>• P2 - Few patches of stems;<br>• P3 - Several patches of stems;<br>• P4 - Continuous canopy; openings common;<br>• P5 - Continuous canopy; openings uncommon. |
| 81.          | ORIGIN_1   | Numeric       | 11             | 2                  | Year of origin of Layer 1.                                                                                                                                                                                                                                               |
| 82.          | ORGNINT1   | String        | 1              | 0                  | <ul> <li>Differentiates between known and estimated year of origin of layer 1 as follows:</li> <li>A - year of origin is known to the nearest year (annum);</li> <li>D - year of origin is estimated to the nearest decade.</li> </ul>                                   |
| 83.          | CROWN_2    | Numeric       | 11             | 2                  | Crown Closure of layer 2 expressed to the nearest 1%.                                                                                                                                                                                                                    |
| 84.          | HEIGHT_2   | Numeric       | 11             | 2                  | Average height of layer 2 (m).                                                                                                                                                                                                                                           |

![](_page_138_Picture_0.jpeg)

![](_page_138_Picture_2.jpeg)

| FIELD<br>NO. | FIELD NAME | FIELD<br>TYPE | FIELD<br>WIDTH | NO. OF<br>DECIMALS | FIELD DESCRIPTION                                                                                                                                                                                                                                                           |
|--------------|------------|---------------|----------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 85.          | COMPLX_2   | String        | 1              | 0                  | Canopy structure as follows:<br>H - Horizontal.                                                                                                                                                                                                                             |
| 86.          | COMPRG_2   | Numeric       | 11             | 2                  | Complex Stand Quantifier<br>Horizontal Stand - Describes percent of ground area<br>covered by the horizontal component.                                                                                                                                                     |
| 87.          | SP1_2      | String        | 2              | 0                  | <ul> <li>Species 1 of layer 2 as follows:</li> <li>TA - Trembling Aspen;</li> <li>WB - White Birch;</li> <li>BP - Balsam Poplar;</li> <li>BF - Balsam Fir;</li> <li>TL - Larch;</li> <li>JP - Jack Pine;</li> <li>BS - Black Spruce;</li> <li>WS - White Spruce.</li> </ul> |
| 88.          | PER1_2     | Numeric       | 11             | 2                  | Percent Composition for Species 1 of Layer 2.                                                                                                                                                                                                                               |
| 89.          | SP2_2      | String        | 2              | 0                  | Species 2 of layer 2 as follows:<br>• TA - Trembling Aspen;<br>• WB - White Birch;<br>• BP - Balsam Poplar;<br>• BF - Balsam Fir;<br>• TL - Larch;<br>• JP - Jack Pine;<br>• BS - Black Spruce;<br>• WS - White Spruce.                                                     |
| 90.          | PER2_2     | Numeric       | 11             | 2                  | Percent Composition for Species 2 of Layer 2.                                                                                                                                                                                                                               |
| 91.          | SP3_2      | String        | 2              | 0                  | <ul> <li>Species 3 of layer 2 as follows:</li> <li>TA - Trembling Aspen;</li> <li>WB - White Birch;</li> <li>BP - Balsam Poplar;</li> <li>BF - Balsam Fir;</li> <li>TL - Larch;</li> <li>JP - Jack Pine;</li> <li>BS - Black Spruce;</li> <li>WS - White Spruce.</li> </ul> |
| 92.          | PER3_2     | Numeric       | 11             | 2                  | Percent Composition for Species 3 of Layer 2.                                                                                                                                                                                                                               |
| 93.          | SP4_2      | String        | 2              | 0                  | Species 4 of layer 2 as follows:<br>• TA - Trembling Aspen;<br>• WB - White Birch;<br>• BP - Balsam Poplar;<br>• BF - Balsam Fir;<br>• TL - Larch;<br>• JP - Jack Pine;<br>• BS - Black Spruce;<br>• WS - White Spruce.                                                     |
| 94.          | PER4_2     | Numeric       | 11             | 2                  | Percent Composition for Species 4 of Layer 2.                                                                                                                                                                                                                               |
| 95.          | SP5_2      | String        | 2              | 0                  | Species 5 of layer 2 as follows:<br>• TA - Trembling Aspen;<br>• WB - White Birch;<br>• TL - Larch;<br>• JP - Jack Pine;<br>• BS - Black Spruce;<br>• WS - White Spruce.                                                                                                    |
| 96.          | PER5_2     | Numeric       | 11             | 2                  | Percent Composition for Species 5 of Layer 2.                                                                                                                                                                                                                               |

![](_page_139_Picture_0.jpeg)

![](_page_139_Picture_2.jpeg)

| FIELD<br>NO. | FIELD NAME | FIELD<br>TYPE | FIELD<br>WIDTH | NO. OF<br>DECIMALS | FIELD DESCRIPTION                                                                                                                                                                                                                                                        |
|--------------|------------|---------------|----------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 97.          | PATTRN_2   | String        | 2              | 0                  | Canopy pattern of layer 2 defined as follows:<br>• P0 - Single stems;<br>• P1 - Single patch of stems;<br>• P2 - Few patches of stems;<br>• P3 - Several patches of stems;<br>• P4 - Continuous canopy; openings common;<br>• P5 - Continuous canopy; openings uncommon. |
| 98.          | ORIGIN_2   | Numeric       | 11             | 2                  | Year of origin of layer 2.                                                                                                                                                                                                                                               |
| 99.          | ORGNINT2   | String        | 1              | 0                  | <ul> <li>Differentiates between known and estimated year of origin of layer 2 as follows:</li> <li>A - year of origin is known to the nearest year (annum);</li> <li>D - year of origin is estimated to the nearest decade.</li> </ul>                                   |
| 100.         | CROWN_3    | Numeric       | 11             | 2                  | Crown Closure of layer 3 expressed to the nearest 1%.                                                                                                                                                                                                                    |
| 101.         | HEIGHT_3   | Numeric       | 11             | 2                  | Average height of layer 3 (m).                                                                                                                                                                                                                                           |
| 102.         | COMPLX_3   | String        | 1              | 0                  | Canopy structure as follows:<br>None present.                                                                                                                                                                                                                            |
| 103.         | COMPRG_3   | Numeric       | 11             | 2                  | Complex Stand Quantifier<br>• None present.                                                                                                                                                                                                                              |
| 104.         | SP1_3      | String        | 2              | 0                  | Species 1 of layer 3 as follows:<br>• TA - Trembling Aspen;<br>• WB - White Birch;<br>• BP - Balsam Poplar;<br>• BF - Balsam Fir;<br>• TL - Larch;<br>• JP - Jack Pine;<br>• BS - Black Spruce;<br>• WS - White Spruce.                                                  |
| 105.         | PER1_3     | Numeric       | 11             | 2                  | Percent Composition for Species 1 of Layer 3.                                                                                                                                                                                                                            |
| 106.         | SP2_3      | String        | 2              | 0                  | Species 2 of layer 3 as follows:<br>• TA - Trembling Aspen;<br>• WB - White Birch;<br>• BP - Balsam Poplar;<br>• BF - Balsam Fir;<br>• TL - Larch;<br>• JP - Jack Pine;<br>• BS - Black Spruce;<br>• WS - White Spruce.                                                  |
| 107.         | PER2_3     | Numeric       | 11             | 2                  | Percent Composition for Species 2 of Layer 3.                                                                                                                                                                                                                            |
| 108.         | SP3_3      | String        | 2              | 0                  | Species 3 of layer 3 as follows:<br>• TA - Trembling Aspen;<br>• WB - White Birch;<br>• BP - Balsam Poplar;<br>• BF - Balsam Fir;<br>• TL - Larch;<br>• JP - Jack Pine;<br>• BS - Black Spruce;<br>• WS - White Spruce.                                                  |
| 109.         | PER3_3     | Numeric       | 11             | 2                  | Percent Composition for Species 3 of Layer 3.                                                                                                                                                                                                                            |

![](_page_140_Picture_0.jpeg)

![](_page_140_Picture_2.jpeg)

| FIELD<br>NO. | FIELD NAME | FIELD<br>TYPE | FIELD<br>WIDTH | NO. OF<br>DECIMALS | FIELD DESCRIPTION                                                                                                                                                                                                                                                                                              |
|--------------|------------|---------------|----------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 110.         | SP4_3      | String        | 2              | 0                  | Species 4 of layer 3 as follows:<br>• TA - Trembling Aspen;<br>• WB - White Birch;<br>• BF - Balsam Poplar;<br>• BF - Balsam Fir;<br>• TL - Larch;<br>• JP - Jack Pine;<br>• BS - Black Spruce;<br>• WS - White Spruce.                                                                                        |
| 111.         | PER4_3     | Numeric       | 11             | 2                  | Percent Composition for Species 4 of Layer 3.                                                                                                                                                                                                                                                                  |
| 112.         | SP5_3      | String        | 2              | 0                  | Species 5 of layer 3 as follows:<br>♦ JP - Jack Pine.                                                                                                                                                                                                                                                          |
| 113.         | PER5_3     | Numeric       | 11             | 2                  | Percent Composition for Species 5 of Layer 3.                                                                                                                                                                                                                                                                  |
| 114.         | PATTRN_3   | String        | 2              | 0                  | Canopy pattern of layer 3 defined as follows:<br><ul> <li>P0 - Single stems;</li> <li>P1 - Single patch of stems;</li> <li>P2 - Few patches of stems;</li> <li>P3 - Several patches of stems;</li> <li>P4 - Continuous canopy; openings common;</li> <li>P5 - Continuous canopy; openings uncommon.</li> </ul> |
| 115.         | ORIGIN_3   | Numeric       | 11             | 2                  | Year of origin of layer 3.                                                                                                                                                                                                                                                                                     |
| 116.         | ORGNINT3   | String        | 1              | 0                  | <ul> <li>Differentiates between known and estimated year of origin of layer 3 as follows:</li> <li>A - year of origin is known to the nearest year (annum);</li> <li>D - year of origin is estimated to the nearest decade.</li> </ul>                                                                         |
| 117.         | CROWN_S    | Numeric       | 11             | 2                  | Crown Closure of the shrub layer expressed to the nearest 1%.                                                                                                                                                                                                                                                  |
| 118.         | COMPLX_S   | String        | 1              | 0                  | Canopy structure as follows:<br>♦ H - Horizontal.                                                                                                                                                                                                                                                              |
| 119.         | COMPRG_S   | Numeric       | 11             | 2                  | Complex Stand Quantifier<br>Horizontal Stand - Describes percent of ground area<br>covered by the horizontal component.                                                                                                                                                                                        |
| 120.         | SP1_S      | String        | 2              | 0                  | Species 1 of the shrub layer as follows:<br>• Ts - Tall Shrubs;<br>• Al - Alder;<br>• Bh - Beaked Hazel;<br>• Wi - Willow;<br>• Ls - Low Shrub Category;<br>• Bi - Bog Birch;<br>• Bl - Bog Laurel;<br>• La - Labrador tea.                                                                                    |
| 121.         | PER1_S     | Numeric       | 11             | 2                  | Percent Composition for Species 1 of the Shrub Layer.                                                                                                                                                                                                                                                          |
| 122.         | SP2_S      | String        | 2              | 0                  | Species 2 of the shrub layer as follows:<br>• Ts - Tall Shrubs;<br>• Al - Alder;<br>• Bh - Beaked Hazel;<br>• Cr - High Bush Cranberry;<br>• Wi - Willow;<br>• Ls - Low Shrub Category;<br>• Bu - Buffalo Berry;<br>• Bl - Bog Laurel.                                                                         |
| 123.         | PER2_S     | Numeric       | 11             | 2                  | Percent Composition for Species 1 of the Shrub Layer.                                                                                                                                                                                                                                                          |

![](_page_141_Picture_0.jpeg)

![](_page_141_Picture_2.jpeg)

| FIELD<br>NO. | FIELD NAME | FIELD<br>TYPE | FIELD<br>WIDTH | NO. OF<br>DECIMALS | FIELD DESCRIPTION                                                                                                                                                                      |
|--------------|------------|---------------|----------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 124.         | SP3_S      | String        | 2              | 0                  | Species 3 of the shrub layer as follows:<br>• Wi - Willow;<br>• Ls - Low Shrub Category;<br>• Ro - Prickly Rose;                                                                       |
| 125.         | PER3_S     | Numeric       | 11             | 2                  | Percent Composition for Species 3 of the Shrub Layer.                                                                                                                                  |
| 126.         | SP4_S      | String        | 2              | 0                  | Species 4 of the shrub layer as follows:<br>• No species present.                                                                                                                      |
| 127.         | PER4_S     | Numeric       | 11             | 2                  | Percent Composition for Species 3 of the Shrub Layer.                                                                                                                                  |
| 128.         | CROWN_H    | Numeric       | 11             | 2                  | Crown Closure of the herb layer expressed to the nearest 1%                                                                                                                            |
| 129.         | COMPLX_H   | String        | 1              | 0                  | Canopy structure as follows:<br>♦ H - Horizontal                                                                                                                                       |
| 130.         | COMPRG_H   | Numeric       | 11             | 2                  | Complex Stand Quantifier<br>Horizontal Stand - Describes percent of ground area<br>covered by the horizontal component.                                                                |
| 131.         | SP1_H      | String        | 2              | 0                  | Species 1 of the herb layer as follows:<br>• Gr - Grasses;<br>• Se - Sedges, Rushes, Reeds;<br>• Li - Lichens.                                                                         |
| 132.         | PER1_H     | Numeric       | 11             | 2                  | Percent Composition for Species 1 of the Herb Layer.                                                                                                                                   |
| 133.         | SP2_H      | String        | 2              | 0                  | Species 2 of the herb layer as follows:<br>• He - Herbs (unknown species);                                                                                                             |
| 134.         | PER2_H     | Numeric       | 11             | 2                  | Percent Composition for Species 2 of the Herb Layer.                                                                                                                                   |
| 135.         | SP3_H      | String        | 2              | 0                  | Species 3 of the herb layer as follows:<br>• No species present.                                                                                                                       |
| 136.         | PER3_H     | Numeric       | 11             | 2                  | Percent Composition for Species 3 of the Herb Layer.                                                                                                                                   |
| 137.         | SP4_H      | String        | 2              | 0                  | Species 4 of the herb layer as follows:<br>♦ No species present.                                                                                                                       |
| 138.         | PER4_H     | Numeric       | 11             | 2                  | Percent Composition for Species 4 of the Herb Layer.                                                                                                                                   |
| 139.         | SP5_H      | String        | 2              | 0                  | Species 5 of the herb layer as follows:<br>• No species present.                                                                                                                       |
| 140.         | PER5_H     | Numeric       | 11             | 2                  | Percent Composition for Species 5 of the Herb Layer.                                                                                                                                   |
| 141.         | CROWN_A    | Numeric       | 11             | 2                  | Crown Closure of the aquatic layer expressed to the nearest 1%.                                                                                                                        |
| 142.         | COMPLX_A   | String        | 1              | 0                  | Canopy structure as follows:<br>♦ H - Horizontal.                                                                                                                                      |
| 143.         | COMPRG_A   | Numeric       | 11             | 2                  | Complex Stand Quantifier<br>Horizontal Stand - Describes percent of ground area<br>covered by the horizontal component.                                                                |
| 144.         | SP1_A      | String        | 2              | 0                  | <ul> <li>Species 1 of the aquatic layer as follows:</li> <li>Av - Aquatic Vegetation;</li> <li>Af - Floating Aquatic Vegetation;</li> <li>Ae - Emergent Aquatic Vegetation.</li> </ul> |
| 145.         | PER1_A     | Numeric       | 11             | 2                  | Percent Composition for Species 1 of the Aquatic Layer.                                                                                                                                |
| 146.         | SP2_A      | String        | 2              | 0                  | Species 2 of the aquatic layer as follows:<br>• No species present.                                                                                                                    |
| 147.         | PER2_A     | Numeric       | 11             | 2                  | Percent Composition for Species 2 of the Aquatic Layer.                                                                                                                                |

![](_page_142_Picture_0.jpeg)

![](_page_142_Picture_2.jpeg)

(6

| FIELD<br>NO. | FIELD NAME | FIELD<br>TYPE | FIELD<br>WIDTH | NO. OF<br>DECIMALS | FIELD DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------|------------|---------------|----------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 148.         | SP3_A      | String        | 2              | 0                  | Species 3 of the aquatic layer as follows:<br>• No species present.                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 149.         | PER3_A     | Numeric       | 11             | 2                  | Percent Composition for Species 3 of the Aquatic Layer.                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 150.         | COMPLX_N   | String        | 1              | 0                  | Canopy structure as follows:<br>♦ H - Horizontal.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 151.         | COMPRG_N   | Numeric       | 11             | 2                  | Complex Stand Quantifier<br>Horizontal Stand - Describes percent of ground area<br>covered by the horizontal component.                                                                                                                                                                                                                                                                                                                                                                               |
| 152.         | NONFOR     | String        | 3              | 0                  | Non-forested features identified as follows:<br>• L - Lakes or Ponds;<br>• R - Rivers;<br>• FL - Floods;<br>• RD - Roads;<br>• TL - Transmission Line;<br>• PL - Oil or Gas Pipeline.                                                                                                                                                                                                                                                                                                                 |
| 153.         | NONFOR_E   | Numeric       | 11             | 2                  | Extent; used for roads only as follows:<br><ul> <li>1 - Paved, numbered highway;</li> <li>2 - Gravel, numbered highway;</li> <li>3 - Gravel, access road;</li> <li>4 - Local access, dirt/ice road;</li> <li>5 - Trail, dirt.</li> </ul>                                                                                                                                                                                                                                                              |
| 154.         | LANDUSE    | String        | 5              | 0                  | Non-vegetated land-use clearings identified as follows:<br>• vegu - Vegetation (agriculture);<br>• bugp - Built-up area (settlement);<br>• towu - Tower; generic;<br>• cmty - Cemetery;<br>• dmgu - Campground (recreation);<br>• gsof - Gas and oil facilities;<br>• rwgu - Runway;<br>• muou - Mining area: open pit;<br>• mg - Mining area: generic;<br>• peatc - Peat cutting;<br>• Imby - Lumber yard;<br>• sdgu - Solids depot;<br>• bupo - Built-up area (industrial);<br>• ftow - Fire tower. |
| 155.         | MOIST      | String        | 2              | 0                  | Soil moisture regime identified as follows:<br>• VD - Very Dry;<br>• D - Dry;<br>• MF - Moderately Fresh;<br>• F - Fresh;<br>• VF - Very Fresh;<br>• MM - Moderately Moist;<br>• MM - Moist;<br>• VM - Very Moist;<br>• MW - Moderately Wet;<br>• W - Wet;<br>• VW - Very Wet;<br>• A - Aquatic.                                                                                                                                                                                                      |

![](_page_143_Picture_0.jpeg)

![](_page_143_Picture_2.jpeg)

| FIELD<br>NO. | FIELD NAME | FIELD<br>TYPE | FIELD<br>WIDTH | NO. OF<br>DECIMALS | FIELD DESCRIPTION                                                                                                                                                                                                                                                                                                                                                  |
|--------------|------------|---------------|----------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 156.         | MOD1       | String        | 2              | 0                  | Stand modifier 1 identified as follows:<br>• CO - Cutover;<br>• BO - Burnover;<br>• WI - Windthrow;<br>• IN - Insect;<br>• DI - Disease;<br>• AK - Animal Kill;<br>• SF - Seasonal Flood;<br>• SL - Slump;<br>• SI - Silviculture;<br>• CW - Abandoned Well Site;<br>• GZ - Grazing;<br>• CL - Clearing;<br>• SN - Snags;<br>• SB - Sand/gravel;<br>• CB - Cuthank |
| 157.         | EXT1       | Numeric       | 11             | 2                  | Extent of modification 1 identified as follows:<br>• 'Blank' - No disturbance;<br>• 1 - Light;<br>• 2 - Moderate;<br>• 3 - Heavy;<br>• 4 - Severe;<br>• 5 - Entire.                                                                                                                                                                                                |
| 158.         | YEAR1      | Numeric       | 11             | 2                  | Year of modification 1.                                                                                                                                                                                                                                                                                                                                            |
| 159.         | YR1_INT    | String        | 1              | 0                  | Differentiates between known and estimated year of<br>modifier 1 as follows:<br>◆ a - year of modification is known to the nearest year<br>(annum);<br>◆ d - year of modification is estimated to the nearest<br>decade.                                                                                                                                           |
| 160.         | MOD2       | String        | 2              | 0                  | Stand modifier 2 identified as follows:<br>• CO - Cutover;<br>• BO - Burnover;<br>• WI - Windthrow;<br>• DI - Disease;<br>• CL - Clearing;<br>• SF - Seasonal Flood;<br>• SI - Silviculture;<br>• SN - Snags;                                                                                                                                                      |
| 161.         | EXT2       | Numeric       | 11             | 2                  | Extent of modification 2 identified as follows:<br>• 'Blank' - No disturbance;<br>• 1 - Light;<br>• 2 - Moderate;<br>• 3 - Heavy;<br>• 4 - Severe;<br>• 5 - Entire.                                                                                                                                                                                                |
| 162.         | YEAR2      | Numeric       | 11             | 2                  | Year of modification 2.                                                                                                                                                                                                                                                                                                                                            |
| 163.         | YR2_INT    | String        | 1              | 0                  | Differentiates between known and estimated year of modifier 2 as follows:<br>◆ a - year of modification is known to the nearest year (annum).                                                                                                                                                                                                                      |




| FIELD<br>NO. | FIELD NAME | FIELD<br>TYPE | FIELD<br>WIDTH | NO. OF<br>DECIMALS | FIELD DESCRIPTION                                                                                                                                                                                                                                                   |
|--------------|------------|---------------|----------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 164.         | MOD3       | String        | 2              | 0                  | Stand modifier 3 identified as follows:<br>• CO - Cutover;<br>• BO - Burnover;<br>• WI - Windthrow;<br>• SF - Seasonal Flood;<br>• SI - Silviculture;<br>• CL - Clearing;<br>• SN - Snags.                                                                          |
| 165.         | EXT3       | Numeric       | 11             | 2                  | Extent of modification 3 identified as follows:<br><ul> <li>1 - Light;</li> <li>2 - Moderate;</li> <li>3 - Heavy;</li> <li>4 - Severe;</li> <li>5 - Entire.</li> </ul>                                                                                              |
| 166.         | YEAR3      | Numeric       | 11             | 2                  | Year of modification 3.                                                                                                                                                                                                                                             |
| 167.         | YR3_INT    | String        | 1              | 0                  | Differentiates between known and estimated year of modifier 3 as follows:<br>• a - year of modification is known to the nearest year (annum).                                                                                                                       |
| 168.         | MOD4       | String        | 2              | 0                  | Stand modifier 4 identified as follows:<br>• SN - Snags;                                                                                                                                                                                                            |
| 169.         | EXT4       | Numeric       | 11             | 2                  | Extent of modification 4 identified as follows:<br>• 1 - Light;<br>• 2 - Moderate.                                                                                                                                                                                  |
| 170.         | YEAR4      | Numeric       | 11             | 2                  | Year of modification 4.                                                                                                                                                                                                                                             |
| 171.         | YR4_INT    | String        | 1              | 0                  | Differentiates between known and estimated year of modifier 4 as follows:<br>◆ Not present.                                                                                                                                                                         |
| 172.         | MOISTH2    | String        | 2              | 0                  | Soil moisture regime for the minor horizontal layer<br>identified as follows:<br>• F - Fresh;<br>• VF - Very Fresh;<br>• MM - Moderately Moist;<br>• M - Moist;<br>• VM - Very Moist;<br>• MW - Moderately Wet;<br>• W - Wet;<br>• VW - Very Wet;<br>• A - Aquatic. |
| 173.         | MOD1H2     | String        | 2              | 0                  | Stand modifier 1 for the minor horizontal layer identified as<br>follows:<br>• BO - Burnover;<br>• SF - Seasonal Flood;<br>• CL - Clearing;<br>• SN - Snags.                                                                                                        |
| 174.         | EXT1H2     | Numeric       | 11             | 2                  | Extent of modification 1 for the minor horizontal layer<br>identified as follows:<br><ul> <li>1 - Light;</li> <li>2 - Moderate;</li> <li>3 - Heavy;</li> <li>5 - Entire.</li> </ul>                                                                                 |
| 175.         | YEAR1H2    | Numeric       | 11             | 2                  | Year of modification 1 for the minor horizontal layer.                                                                                                                                                                                                              |
| 176.         | YR1_INH2   | String        | 1              | 0                  | Differentiates between known and estimated year of modifier 1 for the minor horizontal layer as follows:<br>• a - year of modification is known to the nearest year (annum).                                                                                        |





| FIELD<br>NO. | FIELD NAME   | FIELD<br>TYPE | FIELD<br>WIDTH | NO. OF<br>DECIMALS | FIELD DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------|--------------|---------------|----------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 177.         | MOD2H2       | String        | 2              | 0                  | Stand modifier 2 for the minor horizontal layer identified as follows:<br>• No modifier present.                                                                                                                                                                                                                                                                                                                                                                                          |
| 178.         | EXT2H2       | Numeric       | 11             | 2                  | Extent of modification 2 for the minor horizontal layer identified as follows:<br>• No extent present.                                                                                                                                                                                                                                                                                                                                                                                    |
| 179.         | YEAR2H2      | Numeric       | 11             | 2                  | Year of modification 2 for the minor horizontal layer.                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 180.         | YR2_INH2     | String        | 1              | 0                  | Differentiates between known and estimated year of modifier 2 for the minor horizontal layer as follows:<br>• Not present.                                                                                                                                                                                                                                                                                                                                                                |
| 181.         | MOD3H2       | String        | 2              | 0                  | Stand modifier 3 for the minor horizontal layer identified as follows:<br>• No modifier present.                                                                                                                                                                                                                                                                                                                                                                                          |
| 182.         | EXT3H2       | Numeric       | 11             | 2                  | Extent of modification 3 for the minor horizontal layer identified as follows:<br>• No extent present.                                                                                                                                                                                                                                                                                                                                                                                    |
| 183.         | YEAR3H2      | Numeric       | 11             | 2                  | Year of modification 3 for the minor horizontal layer.                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 184.         | YR3_INH2     | String        | 1              | 0                  | Differentiates between known and estimated year of modifier 3 for the minor horizontal layer as follows:<br>• Not present.                                                                                                                                                                                                                                                                                                                                                                |
| 185.         | Year_int     | Numeric       | 11             | 2                  | Interpretation Year:<br>• 1994;<br>• 1995;<br>• 1996;<br>• 1999;<br>• 2000;<br>• 2001;<br>• 2002;<br>• 2003;<br>• 2005;<br>• 2006;<br>• 2015                                                                                                                                                                                                                                                                                                                                              |
| 186.         | SHAPE_LENGTH | Numeric       | 31             | 15                 | Shape length in m                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 187.         | SHAPE_AREA   | Numeric       | 31             | 15                 | Shape Area in m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |              |               | CA             | LCULATED FIE       | LDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 188.         | AREAHA       | Numeric       | 8              | 2                  | Area in hectares (ha).                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 189.         | HFLAG        | Numeric       | 8              | 2                  | <ul> <li>Horizontal Identifier as follows:</li> <li>0 - Not a horizontal;</li> <li>1 - Overstorey is the majority horizontal component;</li> <li>2 - Secondary layer is the majority horizontal component;</li> <li>4 - Shrub layer is the majority horizontal component;</li> <li>5 - Herb layer is the majority horizontal component;</li> <li>6 - Aquatic layer is the majority horizontal component;</li> <li>7 - Non Forested layer is the majority horizontal component.</li> </ul> |
| 190.         | SFLAG        | Numeric       | 8              | 2                  | <ul> <li>Dominant Crown Layer Identifier as follows:</li> <li>0 - SFVI Non Forested or a horizontal;</li> <li>1 - Overstorey is the dominant crown;</li> <li>2 - Secondary layer is the dominant crown;</li> <li>3 - Tertiary layer is the dominant crown.</li> </ul>                                                                                                                                                                                                                     |





| FIELD<br>NO. | FIELD NAME      | FIELD<br>TYPE | FIELD<br>WIDTH | NO. OF<br>DECIMALS | FIELD DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------|-----------------|---------------|----------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 191.         | DOM_LAYER       | Numeric       | 8              | 2                  | <ul> <li>Identifies which canopy layer is the dominant layer based<br/>on canopy structure as assigned in HFLAG and SFLAG:</li> <li>1 - Overstorey layer is the dominant layer;</li> <li>2 - Secondary layer is the dominant layer;</li> <li>3 - Tertiary layer is the dominant layer.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 192.         | TOT_CROWN       | Numeric       | 8              | 2                  | Sum of the crown closure of all three canopy layers or the dominant crown closure if a forested horizontal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 193.         | RENEW_SPECIES   | String        | 3              | 0                  | Renewal species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 194.         | CUTBLOCK        | Numeric       | 8              | 2                  | Identifies most recent cutblock from both SFVI cutblocks<br>and FMS cutblocks:<br><ul> <li>1 - Cutblocks identified in SFVI MOD3 field;</li> <li>2 - Cutblocks identified in SFVI MOD2 field that have<br/>not been previously identified;</li> <li>3 - Cutblocks identified in SFVI MOD1 field that have<br/>not been previously identified;</li> <li>4 - Cutblocks indentified in SFVI MOD3 field with no<br/>modifier year (YEAR3);</li> <li>5 - Cutblocks identified in SFVI MOD2 field not<br/>previously identified with no modifier year (YEAR2);</li> <li>6 - Cutblocks identified in SFVI MOD1 field not<br/>previously identified with no modifier year (YEAR2);</li> <li>7 - Override for all FMS cutblocks.</li> </ul> |
| 195.         | CUTYEAR         | Numeric       | 8              | 2                  | Cut Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 196.         | PLAN_BLK        | Numeric       | 8              | 2                  | Planned Block Flag:<br>◆ 0;<br>◆ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 197.         | TACT_BLK        | Numeric       | 8              | 2                  | Tactical Block Flag:<br>◆ 0;<br>◆ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 198.         | CUTFLAG         | Numeric       | 8              | 2                  | Cutflag:<br>♦ 0;<br>♦ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 199.         | SFVI_BURN       | Numeric       | 8              | 2                  | The most recent burn year identified in SFVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 200.         | FIREUPDATE_BURN | Numeric       | 8              | 2                  | Identifies the year burned from the fire update layer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 201.         | RECENT_BURN     | Numeric       | 8              | 2                  | The most recent burn year between the SFVI_BURN and the FIREUPDATE_BURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 202.         | BURNFLAG        | Numeric       | 8              | 2                  | Burn flag<br>♦ No burn<br>♦ 1- Burnt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 203.         | NEWOCC          | String        | 2              | 0                  | Overstorey crown closure class:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 204.         | OSGROUP         | String        | 2              | 0                  | <ul> <li>Overstorey Species Group identified as follows:</li> <li>S - Softwood;</li> <li>SH - Softwood dominated mixedwood;</li> <li>HS - Hardwood dominated mixedwood;</li> <li>H - Hardwood.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |





| FIELD<br>NO. | FIELD NAME | FIELD<br>TYPE | FIELD<br>WIDTH | NO. OF<br>DECIMALS | FIELD DESCRIPTION                                                                                                                                                                                              |
|--------------|------------|---------------|----------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 205.         | OPCTCON    | Numeric       | 8              | 2                  | Overstory layer percent Conifer<br>• 0- 0-9;<br>• 1- 10-19;<br>• 2 - 20-29;<br>• 3- 30-39;<br>• 4- 40-49;<br>• 5- 50-59;<br>• 6- 60-69;<br>• 7- 70-79;<br>• 8- 80-89;<br>• 9- 90-99;<br>• 10- 100              |
| 206.         | OPCTDEC    | Numeric       | 8              | 2                  | Overstory layer percent Deciduous<br>• 0- 0-9;<br>• 1- 10-19;<br>• 2 - 20-29;<br>• 3- 30-39;<br>• 4- 40-49;<br>• 5- 50-59;<br>• 6- 60-69;<br>• 7- 70-79;<br>• 8- 80-89;<br>• 9- 90-99;<br>• 10- 100            |
| 207.         | NEWUCC     | String        | 2              | 0                  | Secondary forested layer crown closure class:                                                                                                                                                                  |
| 208.         | USPGROUP   | String        | 2              | 0                  | <ul> <li>Secondary layer Species Group identified as follows:</li> <li>S - Softwood;</li> <li>SH - Softwood dominated mixedwood;</li> <li>HS - Hardwood dominated mixedwood;</li> <li>H - Hardwood.</li> </ul> |
| 209.         | UPCTCON    | Numeric       | 8              | 2                  | Secondary layer percent Conifer<br>• 0- 0-9;<br>• 1- 10-19;<br>• 2 - 20-29;<br>• 3- 30-39;<br>• 4- 40-49;<br>• 5- 50-59;<br>• 6- 60-69;<br>• 7- 70-79;<br>• 8- 80-89;<br>• 9- 90-99;<br>• 10- 100              |





| FIELD<br>NO. | FIELD NAME           | FIELD<br>TYPE | FIELD<br>WIDTH | NO. OF<br>DECIMALS | FIELD DESCRIPTION                                                                                                                                                                                                                            |
|--------------|----------------------|---------------|----------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 210.         | UPCTDEC              | Numeric       | 8              | 2                  | Secondary layer percent Decidious<br>• 0- 0-9;<br>• 1- 10-19;<br>• 2 - 20-29;<br>• 3- 30-39;<br>• 4- 40-49;<br>• 5- 50-59;<br>• 6- 60-69;<br>• 7- 70-79;<br>• 8- 80-89;<br>• 9- 90-99;<br>• 10- 100                                          |
| 211.         | NEWTCC               | String        | 2              | 0                  | Tertiary layer crown closure class:                                                                                                                                                                                                          |
| 212.         | TSPGROUP             | String        | 2              | 0                  | <ul> <li>Tertiary layer Species Group identified as follows:</li> <li>S - Softwood;</li> <li>SH - Softwood dominated mixedwood;</li> <li>HS - Hardwood dominated mixedwood;</li> <li>H - Hardwood.</li> </ul>                                |
| 213.         | SFVI_SPGP            | String        | 4              | 0                  | <ul> <li>Dominant layer species group:</li> <li>S - Softwood;</li> <li>SH - Softwood dominated mixedwood;</li> <li>HS - Hardwood dominated mixedwood;</li> <li>H - Hardwood.</li> </ul>                                                      |
| 214.         | BLOCK_SPGP           | String        | 6              | 0                  | Block regen species group<br>• H;<br>• HS;<br>• S;<br>• SH                                                                                                                                                                                   |
| 215.         | PREHARVEST_SPGP      | String        | 2              | 0                  | <ul> <li>Preharvest species group</li> <li>S - Softwood;</li> <li>SH - Softwood dominated mixedwood;</li> <li>HS - Hardwood dominated mixedwood;</li> <li>H - Hardwood.</li> </ul>                                                           |
| 216.         | POSTHARV_SPGP        | String        | 2              | 0                  | Postharvest species group- including NSR/NSV<br>• S - Softwood;<br>• SH - Softwood dominated mixedwood;<br>• HS - Hardwood dominated mixedwood;<br>• H - Hardwood.<br>• NSR- not satisfactory restocked<br>• NSV- Not satisfactory vegetated |
| 217.         | POSTHARVEST_SPG<br>P | String        | 3              | 0                  | <ul> <li>Postharvest species group- not including NSR/NSV</li> <li>S - Softwood;</li> <li>SH - Softwood dominated mixedwood;</li> <li>HS - Hardwood dominated mixedwood;</li> <li>H - Hardwood.</li> </ul>                                   |





| FIELD<br>NO. | FIELD NAME | FIELD<br>TYPE | FIELD<br>WIDTH | NO. OF<br>DECIMALS | FIELD DESCRIPTION                                                                                                                                                                                                                                                                                         |
|--------------|------------|---------------|----------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 218.         | OLEADSP    | String        | 2              | 0                  | Overstorey leading species assigned based on<br>OSPGROUP:<br>• BF - Balsam Fir;<br>• BP - Balsam Poplar;<br>• BS - Black Spruce;<br>• JP - Jack Pine;<br>• TA - Trembling Aspen;<br>• TL - Larch;<br>• WB - White Birch;<br>• WS - White Spruce.                                                          |
| 219.         | ULEADSP    | String        | 2              | 0                  | Secondary layer leading species assigned based on<br>USPGROUP:<br>• BF - Balsam Fir;<br>• BP - Balsam Poplar;<br>• BS - Black Spruce;<br>• JP - Jack Pine;<br>• TA - Trembling Aspen;<br>• TL - Larch;<br>• WB - White Birch;<br>• WS - White Spruce.                                                     |
| 220.         | TLEADSP    | String        | 2              | 0                  | <ul> <li>Tertiary layer leading species assigned based on<br/>TSPGROUP:</li> <li>BF - Balsam Fir;</li> <li>BP - Balsam Poplar;</li> <li>BS - Black Spruce;</li> <li>JP - Jack Pine;</li> <li>TA - Trembling Aspen;</li> <li>TL - Larch;</li> <li>WB - White Birch;</li> <li>WS - White Spruce.</li> </ul> |
| 221.         | SFVI_LEAD  | String        | 2              | 0                  | Dominant layer leading species:<br>• BF - Balsam Fir;<br>• BP - Balsam Poplar;<br>• BS - Black Spruce;<br>• JP - Jack Pine;<br>• TA - Trembling Aspen;<br>• TL - Larch;<br>• WB - White Birch;<br>• WS - White Spruce.                                                                                    |
| 222.         | SOFT1      | String        | 2              | 0                  | Primary layer softwood                                                                                                                                                                                                                                                                                    |
| 223.         | SOFT2      | String        | 2              | 0                  | Secondary layer softwood                                                                                                                                                                                                                                                                                  |
| 224.         | SOFT3      | String        | 3              | 0                  | Tertiary layer softwood                                                                                                                                                                                                                                                                                   |
| 225.         | LEAD_SOFT  | String        | 2              | 0                  | SFVI lead softwood                                                                                                                                                                                                                                                                                        |
| 226.         | SEC_SOFT1  | String        | 2              | 0                  | Primary secondary softwood                                                                                                                                                                                                                                                                                |
| 227.         | SEC_SOFT2  | String        | 2              | 0                  | Secondary secondary softwood                                                                                                                                                                                                                                                                              |
| 228.         | SEC_SOFT3  | String        | 3              | 0                  | Tertiary secondary softwood                                                                                                                                                                                                                                                                               |
| 229.         | MARK1      | Numeric       | 8              | 2                  | Primary secondary softwood idenfifer                                                                                                                                                                                                                                                                      |
| 230.         | MARK2      | Numeric       | 8              | 2                  | Secondary secondary softwood identifier                                                                                                                                                                                                                                                                   |
| 231.         | MARK3      | Numeric       | 8              | 2                  | Tertiary secondary softwood identifier                                                                                                                                                                                                                                                                    |





| FIELD<br>NO. | FIELD NAME | FIELD<br>TYPE | FIELD<br>WIDTH | NO. OF<br>DECIMALS | FIELD DESCRIPTION                                                                                                                                                                                            |
|--------------|------------|---------------|----------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 232.         | SEC_SOFT   | String        | 2              | 0                  | Secondary softwood                                                                                                                                                                                           |
| 233.         | SFVI_CRWN  | String        | 1              | 0                  | Dominant layer crown closure class:                                                                                                                                                                          |
| 234.         | BHAGE      | Numeric       | 8              | 2                  | Overstory layer age at breast height                                                                                                                                                                         |
| 235.         | P_INDEX1   | Numeric       | 8              | 3                  | Overstorey layer Productivity Index calculated using<br>formulas from the AVI 2.1 manual                                                                                                                     |
| 236.         | SPECNUM    | Numeric       | 8              | 2                  | Primary layer overstory species                                                                                                                                                                              |
| 237.         | PCLASS1    | Numeric       | 8              | 2                  | Overstorey layer productivity index class assigned by<br>SFVI species SP1_1 and P_INDEX1:<br><ul> <li>1 - Lowest;</li> <li>2 - Low;</li> <li>3 - Medium;</li> <li>4 - High;</li> <li>5 - Highest.</li> </ul> |
| 238.         | BHAGE2     | Numeric       | 8              | 2                  | Secondary layer age at breast height                                                                                                                                                                         |
| 239.         | P_INDEX2   | Numeric       | 8              | 3                  | Secondary layer Productivity Index calculated using formulas from the AVI 2.1 manual                                                                                                                         |
| 240.         | SPECNU2    | Numeric       | 8              | 2                  | Secondary layer overstory species                                                                                                                                                                            |
| 241.         | PCLASS2    | Numeric       | 8              | 2                  | Secondary layer productivity index class assigned by<br>SFVI species SP1_2 and P_INDEX2:<br><ul> <li>1 - Lowest;</li> <li>2 - Low;</li> <li>3 - Medium;</li> <li>4 - High;</li> <li>5 - Highest.</li> </ul>  |
| 242.         | BHAGE3     | Numeric       | 8              | 2                  | Tertiary layer age at breast height                                                                                                                                                                          |
| 243.         | P_INDEX3   | Numeric       | 8              | 3                  | Tertiary layer Productivity Index calculated using formulas from the AVI 2.1 manual                                                                                                                          |
| 244.         | SPECNUM3   | Numeric       | 8              | 2                  | Tertiary layer overstory species                                                                                                                                                                             |
| 245.         | PCLASS3    | Numeric       | 8              | 2                  | Tertiary layer productivity index class assigned by SFVI<br>species SP1_3 and P_INDEX3:<br>1 - Lowest;<br>2 - Low;<br>3 - Medium;<br>4 - High;<br>5 - Highest.                                               |
| 246.         | SFVI_PCLAS | Numeric       | 8              | 2                  | Dominant layer productivity class:<br>• 1 - Lowest;<br>• 2 - Low;<br>• 3 - Medium;<br>• 4 - High;<br>• 5 - Highest.                                                                                          |
|              |            |               | AE             | RIAL CRUISE D      | ATA                                                                                                                                                                                                          |
| 247.         | CRZ_FLAG   | Numeric       | 8              | 2                  | Identifies polygons that were surveyed in the aerial cruise<br>program:<br>• 0 - Not Cruised;<br>• 1 - Aerial Cruised.                                                                                       |





| FIELD<br>NO. | FIELD NAME  | FIELD<br>TYPE | FIELD<br>WIDTH | NO. OF<br>DECIMALS | FIELD DESCRIPTION                                                                                                                                                                                                                                                            |
|--------------|-------------|---------------|----------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 248.         | CRZ_SPGP    | String        | 2              | 0                  | <ul> <li>Aerial Cruise Species Group identified as follows:</li> <li>S - Softwood;</li> <li>SH - Softwood dominated mixedwood;</li> <li>HS - Hardwood dominated mixedwood;</li> <li>H - Hardwood.</li> </ul>                                                                 |
| 249.         | CRZ_OPCTCON | Numeric       | 8              | 2                  | Aerial Cruise percent conifer                                                                                                                                                                                                                                                |
| 250.         | CRZ_OPCTDEC | Numeric       | 8              | 2                  | Aerial Cruise percent deciduous                                                                                                                                                                                                                                              |
| 251.         | CRZ_CROWN   | String        | 2              | 0                  | Aerial Cruise Crown Closure:<br>◆ D.                                                                                                                                                                                                                                         |
| 252.         | CRZ_LEAD    | String        | 2              | 0                  | <ul> <li>Aerial Cruise Leading Species:</li> <li>BS - Black Spruce;</li> <li>JP - Jack Pine;</li> <li>TA - Trembling Aspen;</li> <li>WB - White Birch;</li> <li>WS - White Spruce.</li> </ul>                                                                                |
|              |             |               | FINAL          | CALCULATED         | FIELDS                                                                                                                                                                                                                                                                       |
| 253.         | WATER       | Numeric       | 8              | 2                  | <ul> <li>Binary identifier of Water polygons:</li> <li>♦ 0 - Not Water;</li> <li>♦ 1 - Water.</li> </ul>                                                                                                                                                                     |
| 254.         | DISPO_BIN   | Numeric       | 8              | 2                  | <ul> <li>Binary identifier of Disposition (Timber Reserve and Recreation Area) polygons:</li> <li>♦ 0 - Not a Disposition;</li> <li>♦ 1 - Disposition.</li> </ul>                                                                                                            |
| 255.         | A_NONFOR    | Numeric       | 8              | 2                  | <ul> <li>Identifies Anthropogenically Non-Forested polygons:</li> <li>0 - Not Anthropogenically Non-Forested;</li> <li>1 - SFVI LANDUSE Field;</li> <li>2 - Landuse update layer, ANTH_DISTURB;</li> <li>3 - Mistik update roads identified in RD_UPDATE field.</li> </ul>   |
| 256.         | AGE         | Numeric       | 8              | 2                  | Stand Age                                                                                                                                                                                                                                                                    |
| 257.         | AGECLASS5   | Numeric       | 8              | 2                  | 5-year age class                                                                                                                                                                                                                                                             |
| 258.         | AGECLASS10  | Numeric       | 8              | 2                  | 10-year age class                                                                                                                                                                                                                                                            |
| 259.         | DT_SPGP     | String        | 4              | 0                  | <ul> <li>Development Type Species Group:</li> <li>S - Softwood;</li> <li>SH - Softwood dominated mixedwood;</li> <li>HS - Hardwood dominated mixedwood;</li> <li>H - Hardwood.</li> </ul>                                                                                    |
| 260.         | DT_SP1      | String        | 2              | 0                  | <ul> <li>Development Type Leading Species:</li> <li>BF - Balsam Fir;</li> <li>BP - Balsam Poplar;</li> <li>BS - Black Spruce;</li> <li>JP - Jack Pine;</li> <li>TA - Trembling Aspen;</li> <li>TL - Larch;</li> <li>WB - White Birch;</li> <li>WS - White Spruce.</li> </ul> |
| 261.         | DT_SOFT     | String        | 2              | 0                  | Development Type Leading Softwood:<br>• BF - Balsam Fir<br>• BS - Black Spruce;<br>• JP - Jack Pine;<br>• TL - Larch;<br>• WS - White Spruce.                                                                                                                                |





| FIELD<br>NO. | FIELD NAME | FIELD<br>TYPE | FIELD<br>WIDTH | NO. OF<br>DECIMALS | FIELD DESCRIPTION                                                                                                                                                                                              |
|--------------|------------|---------------|----------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 262.         | DT_2SOFT   | String        | 2              | 0                  | Development Type Secondary Softwood:<br>• BF - Balsam Fir<br>• BS - Black Spruce;<br>• JP - Jack Pine;<br>• TL - Larch;<br>• WS - White Spruce.                                                                |
| 263.         | SIG_SOFT   | Numeric       | 8              | 2                  | Identifies polygons with a hardwood development type species group that contains softwood in one or more layers.                                                                                               |
| 264.         | DT_CROWN   | String        | 2              | 0                  | Development Type Crown Closure:<br>♦ HD - High Density;<br>♦ LD - Low Density.                                                                                                                                 |
| 265.         | DT_SOIL    | String        | 1              | 0                  | Development Type Soil:<br>• B - Brunisolic;<br>• L - Luvisolic;<br>• O - Organic.                                                                                                                              |
| 266.         | DT_PCLASS  | Numeric       | 8              | 2                  | <ul> <li>Development Type Productivity Class:</li> <li>↓ 1 - Lower Productivity;</li> <li>↓ 2 - Higher Productivity.</li> </ul>                                                                                |
| 267.         | DT_SPECIES | String        | 2              | 0                  | Development Type Species:<br>• BS - Black Spruce;<br>• JP - Jack Pine;<br>• TA - Trembling Aspen;<br>• WS - White Spruce.                                                                                      |
| 268.         | C_PROD     | Numeric       | 8              | 2                  | <ul> <li>Binary identifier of stands with low productivity:</li> <li>♦ 0 - No Productivity Constraint;</li> <li>♦ 1 - Low Productivity Constraint.</li> </ul>                                                  |
| 269.         | C_LOWCROWN | Numeric       | 8              | 2                  | <ul> <li>Binary identifier of stands with low crown closure:</li> <li>♦ 0 - No Crown Closure Constraint;</li> <li>♦ 1 - Low Crown Closure Constraint.</li> </ul>                                               |
| 270.         | C_LARCH    | Numeric       | 8              | 2                  | <ul> <li>Binary identifier of stands with significant (&gt;40%) larch component:</li> <li>0 - No Larch Constraint;</li> <li>1 - Significant Larch Composition Constraint.</li> </ul>                           |
| 271.         | OLARCHCOMP | Numeric       | 8              | 2                  | Overstorey larch composition                                                                                                                                                                                   |
| 272.         | ULARCHCOMP | Numeric       | 8              | 2                  | Second layer larch composition                                                                                                                                                                                 |
| 273.         | TLARCHCOMP | Numeric       | 8              | 2                  | Tertiary layer larch composition                                                                                                                                                                               |
| 274.         | C_PINETOE  | Numeric       | 8              | 2                  | <ul> <li>Binary identifier of stands infested with Mistletoe using</li> <li>SFVI modifiers and FORHEALTH field from NRCAN:</li> <li>0 - No Mistletoe Constraint;</li> <li>1 - Mistletoe Constraint.</li> </ul> |
| 275.         | C_BS       | Numeric       | 8              | 2                  | <ul> <li>Binary identifier of low productivity Black Spruce stands:</li> <li>♦ 0 - No Black Spruce Constraint;</li> <li>♦ 1 - Low Productivity Black Spruce Constraint.</li> </ul>                             |
| 276.         | TPR        | String        | 1              | 0                  | Stand Productivity <ul> <li>F- Fair;</li> <li>G- Good;</li> <li>M- Medium;</li> <li>U- Unproductive</li> </ul>                                                                                                 |





(6

| FIELD<br>NO. | FIELD NAME   | FIELD<br>TYPE | FIELD<br>WIDTH | NO. OF<br>DECIMALS | FIELD DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------|--------------|---------------|----------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 277.         | NETDOWN      | Numeric       | 8              | 2                  | Landbase category numbers identified as follows:<br>• 0 - Netlandbase;<br>• 1 - Water;<br>• 2 - Dispositions;<br>• 3 - Anthropogenically Non-Forested;<br>• 4 - Naturally Non-Forested;<br>• 5 - 90 metre Watercourse Buffer;<br>• 6 - 30 Metre Watercourse Buffer;<br>• 7 - 15 Metre Watercourse Buffer;<br>• 8 - Inoperable;<br>• 9 - Operational Constraints - Low Productivity Class;<br>• 10 - Operational Constraints - Low Crown Cover;<br>• 11 - Operational Constraints - Low Crown Cover;<br>• 12 - Operational Constraints - Pine Stands with<br>Significant Dwarf Mistletoe;<br>• 13 - Operational Constraints - Low Productivity Black<br>Spruce Stands. |
| 278.         | NETDOWN_TYPE | String        | 50             | 0                  | Landbase category names identified as follows:<br>• Netlandbase;<br>• Water;<br>• Dispositions;<br>• Anthropogenically Non-Forested;<br>• Naturally Non-Forested;<br>• Naturally Non-Forested;<br>• 30 metre Watercourse Buffer;<br>• 15 metre Watercourse Buffer;<br>• 15 metre Watercourse Buffer;<br>• Inoperable;<br>• Operational Constraints - Low Productivity Class;<br>• Operational Constraints - Low Crown Cover;<br>• Operational Constraints - High Larch Component;<br>• Operational Constraints - Pine Stands with Significant<br>Dwarf Mistletoe;<br>• Operational Constraints - Low Productivity Black<br>Spruce Stands.                             |
| 279.         | EXCLUSION    | String        | 10             | 0                  | Identifies polygons that are not in the netlandbase:<br>◆ Partial;<br>◆ Permanent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 280.         | DEV_CODE     | Numeric       | 8              | 2                  | Development Type Number identified as follows:<br>• 1 - S-WS-A-A;<br>• 2 - S-BS-A-A;<br>• 3 - S-JP-LD-A-1;<br>• 4 - S-JP-LD-A-2;<br>• 5 - S-JP-HD-A-1;<br>• 6 - S-JP-HD-A-2;<br>• 7 - S-JP-L&M<br>• 8 - SH-JP-A-A;<br>• 9 - SH-WS-A-A;<br>• 10 - HS-WS-A-A;<br>• 11 - HS-JP-A-A;<br>• 12 - H-A-LD-A-1;<br>• 13 - H-A_LD-A-2;<br>• 14 - H-A-HD-A-1;<br>• 15 - H-A-HD-A-2;<br>• 16 - H(S)-A-LD-A;<br>• 17 - H(S)-A-HD-A.                                                                                                                                                                                                                                                |





| FIELD<br>NO. | FIELD NAME | FIELD<br>TYPE | FIELD<br>WIDTH | NO. OF<br>DECIMALS | FIELD DESCRIPTION                                                                                                                                                                                                                                                                                                                           |
|--------------|------------|---------------|----------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 281.         | DEVTYPE    | String        | 15             | 0                  | Development Type Name identified as follows:<br>+ H-A-HD-A-1;<br>+ H-A-HD-A-2;<br>+ H-A-LD-A;<br>+ H(S)-A-HD-A;<br>+ H(S)-A-LD-A;<br>+ HS-JP-A-A;<br>+ HS-WS-A-A;<br>+ S-BS-A-A;<br>+ S-JP-HD-A-1;<br>+ S-JP-LD-A-1;<br>+ S-JP-LD-A-2;<br>+ S-JP-LD-A-2;<br>+ S-JP-LD-A-2;<br>+ S-JP-LB-A-A;<br>+ S-JP-A-A;<br>+ SH-JP-A-A;<br>+ SH-WS-A-A. |
| 282.         | SERAL_CLAS | Numeric       | 8              | 2                  | Seral Stage<br>• 1- Young;<br>• 2- Immature;<br>• 3- Mature;<br>• 4- Old;<br>• 5- Older                                                                                                                                                                                                                                                     |
| 283.         | SGR_CODE   | Numeric       | 8              | 2                  | Silviculture Ground Rules Number as follows:<br>• 1 - S-WS;<br>• 2 - S-BS;<br>• 3 - S-JP;<br>• 4 - SH-JP;<br>• 5 - SH-WS;<br>• 6 - HS-WS;<br>• 7 - HS-JP;<br>• 8 - H.                                                                                                                                                                       |
| 284.         | SGR_TYPE   | String        | 15             | 0                  | Silviculture Ground Rules identified as follows:<br><ul> <li>H;</li> <li>HS-JP;</li> <li>HS-WS;</li> <li>S-BS;</li> <li>S-JP;</li> <li>S-WS;</li> <li>SH-JP;</li> <li>SH-WS.</li> </ul>                                                                                                                                                     |
| 285.         | PFT_TYPE   | String        | 10             | 0                  | <ul> <li>PFT polygon type identified as follows:</li> <li>ALA - Agriculture Land;</li> <li>BSH - Bush;</li> <li>FOR - Forested;</li> <li>GRS - Grass;</li> <li>OMS - Open Muskeg;</li> <li>OTH - Other;</li> <li>TMS - Treed Muskeg;</li> <li>UCL - Unclassified;</li> <li>WAT - Water.</li> </ul>                                          |





| FIELD<br>NO. | FIELD NAME      | FIELD<br>TYPE | FIELD<br>WIDTH | NO. OF<br>DECIMALS | FIELD DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------|-----------------|---------------|----------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 286.         | PFT             | String        | 10             | 0                  | <ul> <li>Provincial Forest Type identified as follows:</li> <li>AOH - Any other hardwood except TAB;</li> <li>BSJ - Black Spruce, Jack Pine;</li> <li>BSL - Black Spruce, Larch;</li> <li>HPM - Hardwood with Pine Mixedwood;</li> <li>HSM - Hardwood with Spruce Mixedwood;</li> <li>JLP - Jack Pine, Lodgepole Pine;</li> <li>PMW - Pine dominated mixedwood;</li> <li>SMW - Spruce dominated mixedwood;</li> <li>TAB - Trembling Aspen, White Birch;</li> <li>WSF - White Spruce, Balsam Fir.</li> </ul> |
| 287.         | PFT_SERAL_CLASS | Numeric       | 8              | 2                  | <ul> <li>Seral Class identified as follows:</li> <li>1 - Young;</li> <li>2 - Immature;</li> <li>3 - Mature;</li> <li>4 - Old;</li> <li>5 - Older.</li> </ul>                                                                                                                                                                                                                                                                                                                                                |
| 288.         | PFT_SERAL_CLASS | Numeric       | 8              | 2                  | <ul> <li>Seral Class identified as follows:</li> <li>1 - Young;</li> <li>2 - Immature;</li> <li>3 - Mature;</li> <li>4 - Old;</li> <li>5 - Older.</li> </ul>                                                                                                                                                                                                                                                                                                                                                |
| 289.         | UPD_HEIGHT      | Numeric       | 8              | 2                  | Updated Height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 290.         | Range_Id        |               |                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 291.         | Local_pop       |               |                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 292.         | GL20161118      | Numeric       | 11             | 2                  | Unique spatial identifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 293.         | TACTICAL_C      | String        |                |                    | <ul> <li>Tactical Plan code identified as follows:</li> <li>T1;</li> <li>T2;</li> <li>OF - old forest;</li> <li>" " - non tactical plan.</li> </ul>                                                                                                                                                                                                                                                                                                                                                         |
| 294.         | AOP_YEAR        | Numeric       |                |                    | Identifies blocks that are planned for harvest by calendar                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 295.         | BLOCKSTAT       | String        |                | <u> </u>           | Block status code:<br>CUT - block is cut;<br>PLANNED - block is planned.                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 296.         | Caribou2006     | Numeric       |                |                    | <ul> <li>2007 FMP Caribou Range identifier:</li> <li>0 - outside the caribou ranges;</li> <li>1 - within the caribou ranges.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                     |
| 297.         | GL20170913      | Numeric       | 11             | 2                  | Unique spatial identifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 298.         | OLDFOREST       | Numeric       |                |                    | <ul> <li>Old forest code identified as follows:</li> <li>0 - not identified as old forest;</li> <li>1 - identified as "old" forest;</li> <li>2 - identified as "very old" forest.</li> </ul>                                                                                                                                                                                                                                                                                                                |
| 299.         | GL20171011      | Numeric       | 11             | 2                  | Unique spatial identifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |





| FIELD<br>NO. | FIELD NAME | FIELD<br>TYPE | FIELD<br>WIDTH | NO. OF<br>DECIMALS | FIELD DESCRIPTION                                                                                                                                                                               |
|--------------|------------|---------------|----------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 300.         | PROD       | Numeric       |                |                    | <ul> <li>Productive forest code identified as follows:</li> <li>0 - not included within the model as productive forest;</li> <li>1 - included within the model as productive forest.</li> </ul> |
| 301.         | AREA_HA    | Numeric       |                |                    | Model area field                                                                                                                                                                                |
| 302.         | YOO        | Numeric       |                |                    | Year of origin                                                                                                                                                                                  |